Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
7 tháng 8 2019 lúc 9:30

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
16 tháng 12 2018 lúc 18:21

Chọn đáp án D

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
7 tháng 12 2018 lúc 7:31

Đáp án C

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
11 tháng 11 2018 lúc 17:58

Đáp án C

Áp dụng công thức giải nhanh  f = L 2 − l 2 4 L = 90 2 − 30 2 4.90 = 20 c m .

Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Anh
Xem chi tiết
Hoc247
14 tháng 6 2016 lúc 11:05

Thấu kính mỏng

a) Chứng minh:

\(d+d' =a \Rightarrow d' = a -d\)

Và  \(f=\frac{d.d'}{d+d'} \Rightarrow d = \frac{d.(a-d)}{a}\)

\( \Rightarrow d^2 -ad + af =0\)

\( \Delta = a^2 -4af =a(a-4f)\)

(Điều kiện để phương trình có nghiệm là \(a \geq 4f \))

Vì đã có 1 ảnh rõ nét rồi nên phương trình sẽ có nghiệm, vì có vị trí thứ 2 nữa nên phương trình phải có 2 nghiệm phân biệt.

Ta có hai vị trí này là 2 nghiệm có phương trình:

\( d_1 = \frac{a+ \sqrt{\Delta}}{2}\)

\(d_2 = \frac{a- \sqrt{\Delta}}{2}\)

b) Gọi l =khoảng cách 2 vị trí trên ta có:

\( l = d_2 -d_1 = \frac{a+ \sqrt { \Delta} - (a- \sqrt { \Delta})}{2} = \sqrt{\Delta} \)

Ta có:  \(l^2 = \Delta = a^2 -4af \Rightarrow f = \frac{a^2 -l^2 }{4a}\)

Để đo tiêu cự chỉ cần đo khoảng cách giữa 2 vị trị cho ảnh rõ nét trên màn và khoảng cách giữa vật- màn. Phương pháp này gọi là phương pháp Bessel. Hoặc có thể dùng bất đẳng thức Cauchy để chứng minh cũng được nhé!

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
17 tháng 12 2018 lúc 14:12

Sơ đồ tạo ảnh:

Giải bài tập Vật Lý 11 | Giải Lý 11

Ta có: Giải bài tập Vật Lý 11 | Giải Lý 11

Theo giả thiết: vật thật và ảnh trên màn ⇒ ảnh thật lớn hơn vật suy ra:

a = d1 + d’1 và d’1 > d1 > f > 0 (2)

Từ (1) và (2) ta có: d1.d’1 = f.(d1 + d’1) = f.a (3)

Theo định lý Vi-et đảo thì d1 và d’1 là nghiệm của phương trình: X2 – a.X + f.a = 0 (4)

Điều kiện để có hai vị trí của thấu kính cho ảnh rõ nét trên màn (E) là phương trình (4) phải có hai nghiệm X1 và X2.

Do đó ta phải có: Δ = a2 - 4fa ≥ 0 ⇒ f < a/4

Theo bất đẳng thức Cô-si:

Giải bài tập Vật Lý 11 | Giải Lý 11

Vậy điều kiện Δ = a2 - 4fa ≥ 0 luôn đúng. Trường hợp Δ = 0 thì d1 = d’1 = a/2, khi đó 2 vị trí của thấu kính trùng nhau.

⇒ luôn tồn tại hai vị trí của thấu kính trong khoảng Vật-Màn đều cho ảnh rõ nét trên màn (ĐPCM)

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
9 tháng 5 2018 lúc 3:48

Chọn đáp án C.               

Do tính thuận nghịch của sự truyền tia sáng, do vật kh ta dịch chuyển thấu kính ở khoảng giữa nguồn và màn ảnh luôn có hai vị trí cho ảnh rõ nét trên màn thỏa mãn  

Áp dụng công thức của thấu kính

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
16 tháng 3 2019 lúc 11:53

Chọn đáp án C