Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A với A B = A C = a , cạnh S A = S B = a và có S B C ⊥ A B C . Tính SC để độ dài bán kính mặt cầu ngoại tiếp hình chóp bằng a.
A. S C = a
B. S C = a 2
C. S C = a 3
D. S C = 2 a .
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABC) và tam giác SAB vuông cân tại S. Tính thể tích khối chóp S.ABC theo a
A . a 3 3 12
B . a 3 3 24
C . a 3 3 3
D . a 3 3 4
Đáp án B
Vì tam giác SAB cân tại S nên hạ SH ⊥ AB => H là trung điểm của AB.
Vì
Tam giác SAB vuông cân tại S nên SA = SB = a 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc S B C ^ = 60 0 . Tính theo a thể tích khối chóp .
A . a 3 2 4
B . a 3 2 24
C . a 3 3 4
D . a 3 2 8
Đáp án D.
Đặt SH = x, tính SB, SC theo x. Sau đó áp dụng định lí cosin cho ∆ SBC
Tìm được
Cho hình chóp S.ABCD có đáy là tam giác đều cạnh a , mặt phẳng (SAB) vuông góc với mặt phẳng (ABC) và tam giác SAB vuông cân tại S . Tính thể tích khối chóp S.ABC theo a
A. a 3 3 12
B. a 3 3 24
C. a 3 3 3
D. a 3 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; mặt bên SAB nằm trong mặt phẳng vuông góc với mặt phẳng đáy và tam giác SAB vuông cân tại S. Tính thể tích V của khối chóp S.ABC.
A. V = a 3 3 12
B. V = a 3 3 24
C. V = a 3 3 6
D. V = a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB = AC= a; mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC
A. 1 12 a 3
B. 3 4 a 3
C. 3 12 a 3
D. 1 4 a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, A B = A C = a ; mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC.
A. 1 12 a 3
B. 3 4 a 3
C. 3 12 a 3
D. 1 4 a 3
Đáp án A
Gọi H là trung điểm của AB suy ra S H ⊥ A B
Do Δ S A B vuông cân tại S nên S H = A B 2 = a 2 ; S A B C = a 2 2 ⇒ V = a 3 12 .
cho hình chóp S.ABC có đáy ABC đều cạnh a, tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với (ABC) tính thể tích khối chóp S.ABC.
cho hình chóp S.ABC có đáy ABC đều cạnh a, tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với (ABC) tính thể tích khối chóp S.ABC.
Ai đó giúp mk vứi thay câu hỏi thành tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC=2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
A . V = a 3
B . V = 2 a 3 3
C . V = 2 a 3 3
D . a 3 3
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12