Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình 2 x 2 + 2 m x + 2 - 2 2 x 2 + 4 m x + m + 2 = x 2 + 2 m x + m có nghiệm thực.
A. ( - ∞ ; 0 ] ∪ [ 4 ; + ∞ ) .
B. ( 0 ; 4 ) .
C. ( - ∞ ; 0 ] ∪ [ 1 ; + ∞ ) .
D. (0;1).
Tìm tập hợp tất cả các giá trị của tham số m để phương trình 5 x + 2 − x − 5 m = 0 có nghiệm thực
A. 0 ; 5 5 4
B. 5 5 4 ; + ∞
C. 0 ; + ∞
D. 0 ; 5 5 4
Đáp án A
Điều kiện x ≥ − 2
Đặt t = x + 2 t ≥ 0 ⇒ x = t 2 − 2
Khi đó phương trình tương đương
5 − t 2 + t + 2 − 5 m = 0 ⇔ m = 5 − t 2 + t + 1
Xét hàm số f t = 5 − t 2 + t + 1 ; t ≥ 0.
Ta có:
f ' t = − 2 t + 1 5 − t 2 + t + 1 ; f ' t = 0 ⇔ t = 1 2
Từ bảng biến thiên ra suy ra phương trình có nghiệm thì 0 < m ≤ 5 5 4
Tìm tập hợp tất cả các giá trị của tham số m để phương trình 5 x + 2 - x - 5 m = 0 có nghiệm thực
Đáp án A
Điều kiện x ≥ 2
Đặt t = x + 2 t ≥ 0 ⇒ x = t 2 - 2
Khi đó phương trình tương đương
Từ bảng biến thiên ra suy ra phương trình có nghiệm thì 0 < m < 5 5 4 .
Tìm tập hợp tất cả các giá trị của tham số m để phương trình 5 x + 2 - x - 5 m = 0 có nghiệm thực
A. 0 ; 5 5 4
B. ( 5 5 4 ; + ∞ )
C. ( 0 ; + ∞ )
D. ( 0 ; 5 5 4 )
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 9 1 - x + 2 ( m - 1 ) 3 1 - x + 1 = 0 có 2 nghiệm phân biệt.
A. m > 1
B. m < -1
C. m < 0
D. -1 < m < 0
Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình 2 x 2 + 2 m x + 2 - 2 2 x 2 + 4 m x + m + 2 = x 2 + 2 m x + m có nghiệm thực
A. ( - ∞ , 0 ] ∪ [ 4 , + ∞ )
B. ( 0 , 4 )
C. ( - ∞ , 0 ] ∪ [ 1 , + ∞ )
D. (0,1)
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x 4 - 2 x 2 - 3 + m = 0 có đúng 2 nghiệm thực
A. ( - ∞ ; 3 ) ∪ 4
B. ( - ∞ ; 3 )
C. { - 4 } ∪ ( - ∞ ; 3 )
D. ( - 3 ; + ∞ )
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Đáp án B.
Đặt t = log2 x,
khi đó m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0
⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).
Để phương trình (*) có hai nghiệm phân biệt
Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).
Vì 0 < x1 < 1 < x2 suy ra
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
Tìm tập hợp tất cả các giá trị của tham số m để phương trình x 4 - 2 x 2 - 3 + m = 0 có đúng 2 nghiệm thực.
A. - ∞ ; 3
B. - ∞ ; 3 ∪ 4
C. - 3 ; + ∞
D. - 4 ∪ - 3 ; + ∞