giai phuong trinh sau : x^5-x^3y-y+1=0
giai phuong trinh va he phuong trinh sau:
x2 + 5x -6=0
b{4x+5y=3
{x-3y=5
giai mau giup toi nhe cac ban
Giai he phuong trinh bang phuong phap cong va phuong phap the
<=> \(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
giai he phuong trinh sau:\(\hept{\begin{cases}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{cases}}\)
\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)
Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:
\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)
giai phuong trinh sau x^5-5x^4+4x^3+4x^2-5x+1=0
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
x4-y4=3y2-1. giai phuong trinh ngiem nguyen