Cho tam giác ABC có AB = 4, AC =6, BC = 8. Diện tích của tam giác ABC là
A. 3 15
B. 6 15
C. 3 15 2
D. 15
Cho tam giác ABC vuông tại A, đường cao AH a. Cho AH = 6; BH = 4. Tính AC, BC. b. Cho AB = 15; HC = 16. Tính BH, AC. c. Cho AH = 6; AB : AC = 3 : 4. Tính chu vi và diện tích tam giác ABC.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC có AC là cho trọng tâm của tam giác và AB = 15 BC = 18 AC = 27
a) Tính
b) Tính ��
.Bài 1. cho tam giác Abc cân tại A. có AB = 5. BC = 8. tính diện tích tam giác ABC.
Bài 2. cho tam giác ABC, trung tuyến AM. E thuộc AB sao cho AE = 1/3 AB. Chứng minh :
a)diện tích tam giác AME = ½ diện tích tam giác BME
b) diện tích tam giác AME = 1/6 diện tích tam giáCABc
Bài 3. hình thang ABCD có AB // CD. AC giaomBD tại O. chứng minh diện tích tam giác AOD = diện tích tam giác BOC
Bài 4.cho tam giác ABC. D thuộc AB sao cho AD = 1/3 AB. E thuộc BC sao cho BE = 1/3 BC, F thuộc AC sao cho CF = 1/3 CA. Chứng minh
a)iện tích tam giác ADM = 1/3 diện tích tam giác ABN ( làm được rồi )
b)iện tích tam giác ABM = ½ diện tích tam giác ACM ( làm đc rồi )
c) diện tích tam giác AMD = 1/21 diện tích tam giác ABC
d) diện tích tam giác MNP = 1/7 diện tích tam giác ABC
.help meeee. toán 8 ạ
B1: Tìm x, biết
a, x+ x : 3 * 15 = 324/4 + 102/6
b, 100 - x +5 * 2/2 -5 =0
Bài 2: Cho tam giác ABC , trên AB lấy AD =1/3 AB, trên AC lấy AE sao cho AE = 2/3 AC . Nối B vs E và C vs D
a, So sánh diện tích tam giác ADC và EBC
b, So sánh chiều cao DH của tam giác BDC vs chiều cao EK của tam giác BEC
c, Tính diện tích của tam giác ADE biết diện tích tam giác ABC là 360 m2
Khôn như mi ik hỏi mấy bài đó
nguyễn ngọc hoài an khó lắm , méo làm đc mày thì giỏi rồi
Đề là \(x+\frac{x\cdot15}{3}=\frac{324}{4}+\frac{102}{6}\) hay \(x+\frac{x}{3\cdot15}=\frac{324}{4}+\frac{102}{6}\) vậy em
1. Cho tam giác ABC đường cao AH và trung tuyến AM chia góc A thành 3 góc = nhau, K thuộc AC:AK=AH.CMR: a) góc AKM vuông b) Tính các góc của tam giác ABC
2. Cho tam giác ABC đều. D thuộc BC :BD=1/3 BC. ĐỂ vuông góc với BC ( E thuộc AB ). DF vuông góc với AC ( F thuộc AC ). Chứng minh a) BD =CF b) tam giác DEF đều
3. Cho tam giác ABC vuông tại A: AB = 15 cm, AC =20 cm., AH =12cm. Tính AB và AC
5. Cho tam giác ABC có AB =AC =5 cm, BC =6cm, đường phân giác AF. CMR: a) FB =FD, AF vuông góc với BC b) AF=?
4. Cho tam giác ABC vuông tại A, đường cao AH =6cm, BC =12,5cm, tỉ số HB :HC=9:16. Tính AB, AC
6. Cho tam giác ABC : BC =7,5cm, CA =4,5cm, AB =6cm. Hỏi tam giác ABC là tam giác gì?
7. Cho hình chữ nhật ABCD : AC=29cm, CD =20 cm. Tính diện tích hình chữ nhật
Cho tam giác ABC có góc C bằng 45 độ, AB. AC=32\(\sqrt{6}\), AB:AC=\(\sqrt{6}\):3. Tính BC, góc B và diện tích tam giác ABC
\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)
\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)
\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)
\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)
Kẻ đường cao AD ứng với BC
Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D
\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)
Pitago tam giác vuông ABD:
\(BD=\sqrt{AB^2-AD^2}=4\)
\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)
\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)
\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)
Cho tam giác ABC có AM là trung tuyến, AB = 9, AC = 15, AM = 6. Tính diện tích tam giác ABC.
TRÊN TIA ĐỐI CỦA TIA MA LẤY N SAO CHO A LÀ TRUNG ĐIỂM CỦA MN
DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC CMN = TAM GIÁC BMA ( C.G.C)
=> AB = CN = 9
TA CÓ AN = 2AM = 12
MẶT KHÁC 9^2 + 12^2=81+144=225=15^2
=> CN^2+AN^2=AC^2
=> TAM GIÁC ANC VUÔNG TẠI N
=> S TAM GIÁC ANC = AN.NC = 108
DO TAM GIÁC CMN = TAM GIÁC BMA
=> S TAM GIÁC CMN = S TAM GIÁC BMA
=> DIỆN TÍCH TAM GIÁC ABC = DIỆN TÍCH TAM GIÁC ANC = 108
Cho tam giác ABC vuông tại A có AB : AC = 8: 15 , BC= 51 cm . Tính chu vi và diện tích tam giác ABC
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )
Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)
\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)
\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)
Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)
Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)