Tìm tổng phần thực và phần ảo của số phức z thỏa mãn z + 2 z ¯ = 2 - i 2 1 - i
A. 13.
B. – 3.
C.10.
D. -10.
Tìm tổng phần thực và phần ảo của số phức z thỏa mãn: (1 - i) ( z - 2i) = 2 + i.
A. 4.
B. 3.
C. 5.
D. 7.
Số phức z thỏa mãn z - 1 = 5 , 1 z + 1 z ¯ = 5 17 và z có phần ảo dương. Tìm tổng phần thực và phần ảo của z.
Số phức z thỏa mãn z - 1 = 5 , 1 z + 1 z ¯ = 5 17 và z có phần ảo dương. Tìm tổng phần thực và phần ảo của z.
A. 2.
B. 4.
C. 6.
D. 8.
Tính tổng phần ảo các số phức z thỏa mãn |z| = 5 và phần thực của nó bằng 2 lần phần ảo.
A. 0
B. 1
C. 2
D.3
Chọn A.
Gọi số phức cần tìm là z = x = yi.
Ta có:
hay x2 + y2 = 25 (*)
Mặt khác: Số phức có phần thực của nó bằng 2 lần phần ảo nên x = 2y
thay vào phương trình (*) ta được: 5y2 = 25 hay
Vậy số phức cần tìm là:
Cho số phức z thỏa mãn z z ¯ = 1 và z ¯ - 1 = 2 . Tổng phần thực và phần ảo của z bằng
A. -1
B. 0
C. 1
D. 2
Giả sử
Giải hệ (1) và (2), ta được
Chọn A.
Cho số phức z thỏa mãn z ¯ = ( 2 + i ) 2 ( 1 - 2 i ) . Khi đó tổng bình phương phần thực và phần ảo của số phức z là
A. 18
B. 27
C. 61
D. 72
Cho số phức z thỏa mãn z = 2 + 1 2 1 - 2 i . Khi đó, tổng bình phương phần thực và phần ảo của z bằng:
A. 18
B. 27
C. 61
D. 72
Trong các số phức z thỏa mãn điều kiện z − 2 − 4 i = z − 2 i . Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.