Tìm tất cả các số nguyên x, y sao cho: 3.x^2+1=19.y^2
Tìm tất cả các số nguyên tố x,y sao cho
3.x^2+1= 19.y^2
tìm tất cả các số nguyên tố x, y sao cho a
a) x^2-12.y^2=1
b) 3.x^2+1=19^2
tìm tất cả các số nguyên tố x;y sao cho:
a) 3 . x^2 + 1 =19 . y^2
b) x^2 = 8 . y + 1
1)Tìm tất cả các số nguyên dương n sao cho :2n-1 chia hết cho 7
2)Tìm số nguyên x,y sao cho :|x-1|+|x-2|+|y-3|+|y-4|=3
Tìm tất cả các số nguyên tố x ,y sao cho :
a, \(x^2-12.y^2=1\)
b,\(3.x^2+1=19.y^2\)
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm tất cả các cặp số nguyên dương x,y và số nguyên p sao cho x^3 + y^3 = p^2
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên dương x, y sao cho: x(y+2)+y=1
x,y nguyên dương =>x>1;y+2>3 =>x(y+2)>3 mà y>1= >x(y+2)+y>4 =>gt vô lí => kết quả là gì tự hiểu