cho bieu thuc A =(x+5)^2020+|y-2021|+2020.timf gia tri nho nhat cua A
cho bieu thuc A =(x+5)^2020+|y-2020|.timf gia tri nho nhat cua A
Bạn tham khảo câu trả lời của mình tại :
Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM
Tim gia tri nho nhat cua bieu thuc P=\(|x-28|+|x-3|+|x-2020|\)
\(P=\left|x-28\right|+\left|x-3\right|+\left|x-2020\right|\)
\(=\left(\left|x-3\right|+\left|x-2020\right|\right)+\left|x-28\right|\)
Đặt \(A=\left|x-3\right|+\left|x-2020\right|\)
Ta có: \(A=\left|x-3\right|+\left|x-2020\right|\)
\(=\left|x-3\right|+\left|2020-x\right|\ge\left|x-3+2020-x\right|=2017\left(1\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-3\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2020-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\2020-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2020\end{cases}}\)hoặc \(\hept{\begin{cases}x< 3\\x>2020\end{cases}\left(loai\right)}\)
\(\Leftrightarrow3\le x\le2020\)
Ta có: \(\left|x-28\right|\ge0;\forall x\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left|x-28\right|=0\)
\(\Leftrightarrow x=28\)
Từ (1) và (2)\(\Rightarrow A+\left|x-28\right|\ge2017\)
Hay \(P\ge2017\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}3\le x\le2020\\x=28\end{cases}}\Leftrightarrow x=28\)
Vậy \(P_{min}=2017\Leftrightarrow x=28\)
Tim gia tri nguyen cua x đê bieu thuc M=\(\frac{2019x-2020}{3x+2}\)co gia tri nho nhat
Điều kiện \(x\ne\frac{-2}{3},x\in Z\)
M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)
Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)
Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)
\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất
\(\Leftrightarrow3x+2=-1\)
\(\Leftrightarrow\)\(3x=-3\)
\(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)
Với x=-1 thì M=4039
Vậy Min M=4039\(\Leftrightarrow x=-1\)
cho x+y=5 tim gia tri nho nhat cua bieu thuc A=|x+1|+|y-2|
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)
<=> (x+1)(y-2) lớn hơn hoặc bằng 0
<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0
x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0
<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2
<=> x lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1
Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1
a, tim gia tri nho nhat cua bieu thuc :\(A=\)\(|x+19|+|y-5|+1890\)
b,tim gia tri lon nhat cua bieu thuc:\(B=-|x-7|-|y+13|+1945\)
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
gia tri nho nhat cua bieu thuc A=x^2+2x+5
A= x^2+2x +5
=x^2+2x+1+4
=(x+1)2 +4
=>Amin=4
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)
\(=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)
Vậy minA=4 khi x=-1
tim gia tri nho nhat cua bieu thuc A=/x+y/+/x+3/+2014
\(A=\left|x+y\right|+\left|x+3\right|+2014\ge0+0+2014=2014\) ; vì \(\left|x+3\right|\ge0\)\(;\left|x+y\right|\ge0\)
Min A =2014 khi x+3 =0 hay x =-3
và x+y =0 hay y =-x = -(-3) = 3