Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Châu
Xem chi tiết
Thế Thôi
19 tháng 4 2022 lúc 5:57

quanvjp
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 17:52

#include <conio.h>

#include <stdio.h>

int tong(int n)

{

int i;

int s=0;

for (i=0;i<=n;i++)

s+=(2*i+1);

return s;

}

void main()

{

int n;

printf("\nNhap N=   ");

scanf("%d",&n);

printf("\n Tong s = %d",tong(n));

getch();

}

๛βùίツ๖ۣۜQʊốC Cɦíղɦッ
Xem chi tiết
hưng phúc
10 tháng 10 2021 lúc 13:06

Bài 8:

Tổng số đầu và số cuối là: n + 1

Số cặp là: \(\dfrac{n}{2}\)

Tổng là: \(\dfrac{n}{2}\left(n+1\right)=\dfrac{n^2}{2}+\dfrac{n}{2}=\dfrac{n^2+n}{2}\)

Trương Huy Hoàng
10 tháng 10 2021 lúc 13:42

Bài 8:

#include <iostream>
using namespace std;
int main()
{
int n, S;
cin >> n;
for(int i=1; i<=n; i++)
    S+=i;
    cout << S << endl;
return 0;
}

Bài 9:

#include <iostream>
using namespace std;
int main()
{
int n;
double S;
cin >> n;
for(int i=1; i<=n; i++)
    S+=1.0/i;
    cout << double(S) << endl;
return 0;
}

Chúc bn học tốt!

Nguyễn Thái Bảo
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 7 2023 lúc 15:02

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

Gia Hân
22 tháng 7 2023 lúc 15:04

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

Nguyễn Thái Bảo
22 tháng 7 2023 lúc 15:35

xin loi mik danh nham nhe bai do la 10000 nhe

 

 

Nguyễn Thu Hường
Xem chi tiết
Quỳnh Mai Aquarius
18 tháng 10 2016 lúc 22:49

Bài 1 :

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)

Bài 2 :

\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

Bài 3 :

\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)

\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)

\(3S=\frac{1}{4}-\frac{1}{22}\)

\(S=\frac{18}{88}\div3=\frac{6}{88}\)

Nguyễn Dương Tùng Duy
Xem chi tiết
Nguyễn Dương Tùng Duy
Xem chi tiết
Nguyễn Văn Hòa
Xem chi tiết
Đoàn Chí Kiên
Xem chi tiết
nblong2312
Xem chi tiết
Five centimeters per sec...
19 tháng 4 2017 lúc 20:23

\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)

\(S\cdot\frac{1}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{10}}\)

\(S\cdot\frac{-2}{3}=\frac{1}{3^{10}}-\frac{1}{3}\)

\(S=\frac{\frac{1}{3^{10}}-\frac{1}{3}}{-\frac{2}{3}}\)

Ryuunosuke Ikenami
19 tháng 4 2017 lúc 20:24

S=1/3+1/3^2+1/3^3+...+1/3^8+1/3^9

1/3S=1/3^2+1/3^3+1/3^4+...+1/3^9+1/3^10

S-1/3S=(1/3+1/3^2+1/3^+...+1/3^8+1/3^9)-(1/3^2+1/3^3+1/3^4+...+1/3^9+1/3^10)

2/3S=1/3-1/3^10

S=(1/3-1/3^10):2/3

Bye My Love
19 tháng 4 2017 lúc 20:26

Ta có:3S=1+1/3+1/3^2+...+1/3^7+1/3^8

3S-S=(1+1/3+1/3^2+...+1/3^7+1/3^8)-(1/3+1/3^2+1/3^3+...+1/3^8+1/3^9)

2S=1-1/3^9

2S=19682/19683

S=9841/19683