Cho tứ diện đều ABCD cạnh a. Gọi M là trung điểm của C (như hình vẽ). Tính cosin của góc tạo bởi hai đường thẳng AC và BM.
Cho hình chóp tứ giác đều có tất cả các cạnh bằng d. Gọi M là trung điểm của SD. O là giao điểm của hai đường chéo AC và BD. Tang của góc tạo bởi hai đường thẳng BM và SO là:
A . 2 2
B . 3
C . 2 3
D . 3
Cho tứ diện đều ABCD cạnh bằng a. Gọi M là trung điểm của CD. Tính khoảng cách giữa hai đường thẳng AC và BM
Cho tứ diện đều ABCD cạnh bằng a. Gọi M là trung điểm của CD. Tính khoảng cách giữa hai đường thẳng AC và BM
Cho tứ diện đều ABCD. Gọi M là trung điểm cạnh AC (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BM và mặt phẳng (BCD) bằng
A. 3 6
B. 2 3
C. 14 7
D. 14 2
Cho tứ diện đều ABCD. Gọi M là trung điểm cạnh AC (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BM và mặt phẳng (BCD) bằng
A. 3 6
B. 2 3
C. 14 7
D. 14 2
Đáp án C
Gọi H là tâm mặt đáy, ta có AH ⊥ (BCD) và gọi N là trung điểm
Do đó
Cho tứ diện đều ABCD. Gọi M là trung điểm cạnh AC (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BM và mặt phẳng (BCD) bằng
A. 3 6
B. 2 3
C. 14 7
D. 14 2
Cho tứ diện đều ABCD cạnh a. Tính cosin góc giữa hai đường thẳng AB và CI với I là trung điểm của AD
A. 3 2
B. 3 6
C. 3 4
D. 1 2
Cho tứ diện đều ABCD, M là trung điểm BC. Tính cosin của góc giữa hai đường thẳng AB và DM
A. 3 6
B. 2 2
C. 3 2
D. 1 2
Cho tứ diện đều ABCD, M là trung điểm BC. Tính cosin của góc giữa hai đường thẳng AB và DM?
A. 3 6
B. 2 2
C. 3 2
D. 1 2
Đáp án A
Giả sử tứ diện đều cạnh a
Gọi H là tâm đường tròn ngoại tiếp Δ B C D ⇒ A H ⊥ B C D
Gọi E là trung điểm
A C ⇒ M E // A B ⇒ A B , D M = M E , M D
Ta có M E = a 2 , E D = M D = a 3 2
cos
A
B
,
D
M
=
cos
M
E
,
M
D
=
cos
E
M
D
⏜
cos
E
M
D
⏜
=
M
E
2
+
M
D
2
−
E
D
2
2
M
E
.
M
D
=
3
6