Mỗi bạn An , Bình chọn ngẫu nhiên 3 chữ số trong tập 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 Tính xác suất để trong hai bộ ba chữ số mà An, Bình chọn ra có đúng một chữ số giống nhau.
Mỗi bạn An , Bình chọn ngẫu nhiên 3 chữ số trong tập 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Tính xác suất để trong hai bộ ba chữ số mà An, Bình chọn ra có đúng một chữ số giống nhau.
A. 7 40
B. 9 10
C. 6 25
D. 21 40
Chọn D.
Phương pháp:
Đếm số khả năng có lợi cho biến cố bằng cách xét từng trường hợp: trùng chữ số thứ nhất, trùng chữ số thứ 2 và trùng chữ số thứ ba.
Cách giải:
Số phần tử của không gian mẫu: n Ω = C 10 3 . C 10 3 = 14400.
Gọi A là biến cố: “Trong hai bộ số của hai bạn có đúng một chữ số giống nhau”.
+) TH1: Bình chọn được a và không chọn được b, c thì hai chữ số còn lại của Bình phải là 2 trong 7 chữ
số khác a, b, c hay có C 7 2 cách chọn.
+) TH2: Bình chọn được b và không chọn được a, c thì hai chữ số còn lại của Bình phải là 2 trong 7 chữ số khác a, b, c hay có C 7 2 cách chọn.
+) TH3: Bình chọn được c và không chọn được a, b thì hai chữ số còn lại của Bình phải là 2 trong 7 chữ
Mỗi bạn An và Bình chọn ngẫu nhiên ba số trong tập {0,1,2,3,4,5,6,7,8,9}. Xác suất để trong hai bộ ba số của An và Bình chọn ra có nhiều nhất một số giống nhau bằng
A.-10
B. 203 480
C. 49 60
D. 17 24
Mỗi bạn An và Bình chọn ngẫu nhiên ba số trong tập {0,1,2,3,4,5,6,7,8,9}. Xác suất để trong hai bộ ba số của An và Bình chọn ra có nhiều nhất một số giống nhau bằng
Mỗi bạn An và Bình chọn ngẫu nhiên ba số trong tập {0,1,2,3,4,5,6,7,8,9}. Tính xác suất để trong hai bộ ba số của An và Bình chọn ra có nhiều nhất một số giống nhau bằng:
A . - 10
B . 203 480
C . 49 60
D . 17 24
Chọn C
Số cách chọn của An là C 10 3 ; số cách chọn của Bình là C 10 3 . Vậy số phần tử của không gian mẫu là:
Gọi A là biến cố “ Hai bộ ba số An và Bình chọn ra có nhiều nhất một số giống nhau”.
TH1: Không có số nào giống nhau thì có C 10 3 C 7 3 cách chọn.
TH2: Có một số giống nhau thì có C 10 3 C 3 1 C 7 2 cách chọn.
Do đó
Vậy xác suất cần tìm là:
Cho tập hợp A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 . Gọi S là tập hợp các số có 3 chữ số khác nhau được tạo thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S , xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu bằng
A. 23 25 .
B. 2 25 .
C. 4 5 .
D. 1 5 .
Đáp án B
Khi đó
- Số cách chọn chữ số α có 5 cách chọn vì α ≠ 0 .
- Số cách chọn chữ số b có 5 cách chọn vì b ≠ α .
- Số cách chọn chữ số c có cách chọn vì c ≠ α và c ≠ b .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên1 số từ tập S .
Suy ra số phần tử của không gian mẫu là Ω = C 100 1 = 100 .
Gọi X là biến cố "Số được chọn có chữ số cuối gấp đôi chữ số đầu". Khi đó ta có các bộ số là 1 b 2 hoặc 2 b 4 thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là Ω X = 8 .
Vậy xác suất cần tính P ( X ) = Ω X Ω = 8 100 = 2 25 .
Tập S gồm các số tự nhiên có 6 chữ số khác nhau được thành lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn không có hai chữ số chẵn đứng cạnh nhau là:
A. 11 70
B. 29 140
C. 13 80
D. 97 560
Gọi A là tập hợp các số tự nhiên có 6 chữ số đội một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và 4 đứng cạnh nhau.
A. 4 25
B. 4 15
C. 8 15
D. 2 15
Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và chữ số 4 đứng cạnh nhau
A. 4 25 .
B. 4 15 .
C. 8 25 .
D. 2 15 .
Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và chữ số 4 đứng cạnh nhau.
Đáp án C.
Số cách lập số có 5 chữ số có 3 và 4 đứng cạnh nhau là 2(4.4.3.2) = 192 cách.
Số cách lập số có 6 chứ số đôi một khác nhau từ A là 5.5.4.3.2=600 cách
Suy ra xác suất cần tìm là 192 600 = 8 25