Cho hai số thực dương a và b thỏa mãn a 2 + b 2 = 98 a b . Khẳng định nào sau đây đúng ?
Cho hai số thục dương a và b thỏa mãn a 2 + b 2 = 98 a b . Khẳng định nào sau đây là đúng?
A. 2 log 2 ( a + b ) = l o g 2 a + log 2 b
B. log 2 a + b 2 = l o g 2 a + log 2 b
C. 2 log 2 a + b 10 = l o g 2 a + log 2 b
D. log 2 a + b 10 = 2 l o g 2 a + log 2 b
Cho 2 số thực dương a và b thỏa mãn 1< a< b. Khẳng định nào sau đây là đúng.
A. logab< 1< logba
B. 1< logab< logba
C. logab< logba< 1
D. logba< 1< logab
Chọn D
Cách 1: Cho a= 4; b= 2 ta thấy log24> 1> log42
Cách 2: Ta có: 1< a< b nên
Cho hai số thực dương a và b thỏa mãn a 2 + b 2 = 98 a b . Khẳng định nào sau đây đúng ?
A. 2 log 2 a + b = log 2 a + log 2 b
B. log 2 a + b 2 = log 2 a + log 2 b
C. 2 log 2 a + b 10 = log 2 a + log 2 b
D. log 2 a + b 10 = 2 log 2 a + log 2 b
Chọn C.
Phương pháp: Để làm tốt dạng toán này chúng ta cần quan sát 4 đáp án xem có đặc điểm gì chung. Từ đó tìm ra phép biến đổi phù hợp.
Cho 2 số thực dương a,b thỏa mãn 1> a> b> 0 Khẳng định nào sau đây là đúng
A. logab< 1< logba
B. 1< logab< log ba
C. logab< logba< 1
D. logba< 1< logab
Chọn D
Cho ta thấy logab= 2 và logba= ½. Do vậy logba< 1< logab
Cho các số thực a, b, thỏa mãn a - b = 2 . Khẳng định nào sau đây là đúng?
Tích của hai số a và b:
A. có giá trị nhỏ nhất là -1
B. có giá trị lớn nhất là -1
C. có giá trị nhỏ nhất khi a = b
D. không có giá trị nhỏ nhất
Ta có: a – b = 2 nên a= b +2.
Khi đó; tích a b = b + 2 . b = b 2 + 2 b = b 2 + 2 b + 1 - 1 = b + 1 2 - 1 ≥ - 1 ∀ b
Vậy tích ab nhỏ nhất là -1 khi b = -1 ; a= 1
Cho a, b là hai số thực dương khác 1 thỏa mãn a 2 3 < a 4 5 và log b 7 5 > log b 4 3 . Khi đó khẳng định nào sau đây là đúng?
A. 0 < a < 1 , 0 < b < 1
B. a > 1 , 0 < b < 1
C. 0 < a < 1 , b > 1
D. a > 1 , b > 1
Cho các số thực dương a,b thỏa mãn a 2 3 > a 3 5 và log b 2 3 < log b 3 5 . Khẳng định nào sau đây là đúng?
A. 0 < log a b < 1.
B. log a b > 1.
C. log b a < 0.
D. 0 < log b a < 1.
Cho các số thực dương a,b thỏa mãn a 2 3 > a 3 5 và log b 2 3 < log b 3 5 . Khẳng định nào sau đây là đúng?
A. 0 < log a b < 1.
B. log a b > 1.
C. log b a < 0.
D. 0 < log b a < 1.
Đáp án C
Cách 1: Tư duy tự luận
Ta có a 2 3 > a 3 5 2 3 > 3 5 ⇒ a > 1 và log b 2 3 < log b 3 5 . 2 3 > 3 5 ⇒ 0 < b < 1. Vậy log a b < 0 log b a < 0
Cách 2: Sử dụng máy tính cầm tay
Chọn các giá trị
a = 0,5 ∈ 0 ; 1 ; a = 1,5 ∈ ( 1 ; + ∞ ) ; b = 0,3 ∈ ( 0 ; 1 ) ; b = 1,3 ∈ ( 1 ; + ∞ )
Ta chọn được các giá trị a =1,5 và b = 0,3 thỏa mãn điều kiện.
Ấn tiếp
Vậy log a B < 0 và log b a < 0.
Cho a, b là các số dương phân biệt khác 1 và thỏa mãn ab=1 Khẳng định nào sau đây đúng?
A. log a b = 1
B. log a b + 1 < 0
C. log a b = − 1
D. log a b + 1 > 0
Đáp án C
log a a b = log a 1 ⇔ 1 + log a b = 0 ⇔ log a b = − 1