Mặt cầu đi qua tất cả các đỉnh của hình lập phương cạnh a có bán kính bằng
Mặt cầu đi qua tất cả các đỉnh của một hình lập phương cạnh a có bán kính bằng
A. 2 a 2
B. 3 a 4
C. 3 a 2
D. 6 a 4
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Hãy xác định tâm và bán kính mặt cầu:
Đi qua 8 đỉnh của hình lập phương.
Tâm là giao điểm các đường chéo (O)
Bán kính mặt cầu là OA = 1/2 AC’
Đường chéo hình vuông cạnh a là a√2 (AC = a√2)
Xét tam giác vuông ACC’ tại C:
⇒ bán kính mặt cầu đi qua 8 đỉnh hình lập phương là (a√3)/2
Cho hình lập phương có cạnh bằng 4. Mặt cầu tiếp xúc với tất cả các cạnh của hình lập phương có bán kính bằng:
A. 2
B. 2 3
C. 2 2
D. 4 2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích mặt cầu đi qua tất cả các đỉnh của hình lập phương.
Gọi I là tâm của hình lập phương. Tất cả các đỉnh của hình lập phương đều có khoảng cách đến I bằng nên chúng nằm trên mặt cầu tâm I bán kính
Ta có diện tích mặt cầu đó là S = 4 πr 2 = 3 πa 2
Cho hình lập phương có cạnh bằng 1. Diện tích mặt cầu đi qua các đỉnh của hình lập phương bằng:
A. 6 π
B. 3 π
C. π
D. 2 π
Cho hình lập phương có cạnh bằng 1. Diện tích mặt cầu đi qua các đỉnh của hình lập phương bằng:
A. 6 π
B. 3 π
C. π
D. 2 π
Đáp án B
Bán kính của mặt cầu là
R = 3 2 ⇒ S = 4 π R 2 = 4 π . 3 4 = 3 π
Cho một hình lập phương có bán kính mặt cầu ngoại tiếp, mặt cầu nội tiếp và mặt cầu tiếp xúc với tất cả các cạnh của hình lập phương lần lượt là R 1 , R 2 , R 3 . Mệnh đề nào sau đây đúng?
A. R 1 > R 3 > R 2
B. R 1 > R 2 > R 3
C. R 3 > R 1 > R 2
D. R 2 > R 1 > R 3
Đáp án A
Ta có: R 1 = I A , R 2 = I O , R 3 = I K . Mà I A > I K > I O nên R 1 > R 3 > R 2 .
Cho một hình lập phương có bán kính mặt cầu ngoại tiếp, mặt cầu nội tiếp và mặt cầu tiếp xúc với tất cả các cạnh của hình lập phương lần lượt là R 1 , R 2 , R 3 . Mệnh đề nào sau đây đúng?
Cho hình lập phương có cạnh bằng 1. Thể tích của mặt cầu đi qua các đỉnh hình lập phương là