Biết ∫ 0 1 x + 2 x 2 + 4 x + 7 d x = a ln 12 + b ln 7 , với a, b là các số nguyên. Tổng a + b là :
A. -1
B. 1
C. 0
D. 1 2
Tìmx,y biết x^2-25=0 b, (x+1)^2=4 c, (x-3)^3-64=0 d, 2^x+1-128=0 e, x^2 +(y-2)^2=0
a: =>(x-5)(x+5)=0
=>x=5 hoặc x=-5
b: \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow x\in\left\{1;-3\right\}\)
c: =>x-3=4
hay x=7
d: =>x+1=7
hay x=6
e: =>x=0 và y-2=0
hay x=0 và y=2
Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
1) Tìm x và y biết
a) (2x+1)^2 + y^2 = 0
b) x^2 +2x+1+(y-1)^2 = 0
c) x^2 - 2x+y^2 + 45y + 5 = 0
2) Tìm x biết
a) x(5-2x) - 2x(1-x) = 15
b) (x-3)^2 - 16+0
c) (2x-1)^2 + (x+3)^2- 5(x+7)(x-7) = 0
1) Tìm x và y biết
a) (2x+1)2 + y2 = 0
Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)
Để \(\left(2x+1\right)^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)
b) x2 + 2x + 1 + (y-1)2 = 0
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)
Lập luận tương tự câu a ,ta có :
\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) x2 - 2x + y2 + 4y + 5 = 0
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Lập luận tương tự 2 câu trên
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Tìm x thuộc Z biết:
a, x (x + 2) = 0
b, (x - 1) (x - 2) = 0
c, (x - 2) (x^2 + 1) = 0
d, (x + 1) (x^2 - 4) = 0
e, x (x - 3) > 0
a) \(x\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy ...
b) (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ...
còn lại tương tự
a) x(x+2) = 0
=> x=0 hoặc x+2 = 0
+ x + 2 = 0
x = 0 - 2
x = -2
Vậy x thuộc tập hợp 0 ; -2
b) (x-1)(x-2)=0
=> x-1 =0 hoặc x-2=0
+ x-1=0 + x-2=0
x=0+1 x=0+2
x=1 x=2
Vậy x thuộc tập hợp 1;2
ý c , d làm giống 2 ý đầu
e) x(x-3)>0
=> \(\hept{\begin{cases}x>0\\x-3>0\end{cases}}\)=> \(\hept{\begin{cases}x>0\\x>3\end{cases}}=>\hept{\begin{cases}\\\end{cases}}x>3\)
Vậy x > 3
Tìm x nguyên biết
+) (x-1).(x^2+1)=0
+) (x+1)^2.(x-2)^2=0
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\)(vì x2 + 1 > 0 )
\(\Leftrightarrow x=1\)
\(\left(x+1\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Tìm x biết:
1> (x+1)^2-(x+2)^2=3
2> (x-1)(x+1)-(x-3)^2=0
3> (x+1)^3-x^2(x+2)-(x-1)^2=0
4> (x+1)(x^2-x+1)-x^2(x+2)+2(x+3)^2=0
Tìm x biết : x mũ 2 + ( x - 1 ) mũ 2 = 0 , ( x -1 ) . ( x - 5 ) > 0 , ( x + 1 ) . ( x - 2 ) < 0
\(2+\left(x-1\right)^2=0\)
\(\left(x-1\right)^2=-2\left(loại\right)\)
P/s : làm từng phần một
( x - 1 ) ( x - 5 ) > 0
TH1: cả x - 1 và x - 5 lớn hơn 0
+) x - 1 > 0 => x > 1
+) x - 5 > 0 => x > 5
=> x > 5
TH2 : cả x - 1 và x - 5 đều bé hơn 0
+) x - 1 < 0 => x < 1
+) x - 5 < 0 => x < 5
=> x < 1
Vậy,..........
\(x^2+\left(x-1\right)^2=0\)
mà mũ chẵn lớn hơn hoặc bằng 0 mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}\)
P/s : sorry mắt mk cận =))
BT9: Tìm x biết
\(1,x^2-9=0\)
\(2,25-x^2=0\)
\(3,-x^2+36=0\)
\(4,4x^2-4=0\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
a) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
c) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)