Tính A =\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
Tính:
A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+....+99}+\frac{1}{50}\)
tính A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+4+......+99}+\frac{1}{50}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
\(=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2.\left(\frac{50}{100}-\frac{1}{100}\right)+\frac{1}{50}=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=1\)
Ket qua la 1 con neu muon xem cach giai thi vao chtt
Đặt \(B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\)
\(B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)
\(\Rightarrow B=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Rightarrow B=2.\frac{49}{100}\)
\(\Rightarrow B=\frac{49}{50}\)
\(\Rightarrow A=B+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Tính\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
Tính \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
= 1.
Cách giải: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
A=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\)
B=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
Cho \(P=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+..+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}}\)và \(Q=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-..-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+..+\frac{1}{500}}\)
a)Tính P,Q b) Tính tỉ số % của P và 3Q
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+........+\frac{1}{1+2+3+4+5+.......+99}+\frac{1}{50}\)vậy A =
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\) là ________________
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
\(=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+....+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{1}{\frac{3.2}{2}}+\frac{1}{\frac{4.3}{2}}+\frac{1}{\frac{5.4}{2}}+....+\frac{1}{\frac{100.99}{2}}+\frac{1}{50}\)
\(=\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{5.4}+...+\frac{2}{100.99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2.\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)
\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{99}-\frac{2}{100}+\frac{1}{50}\)
\(A=\frac{2}{2}-\frac{2}{100}+\frac{1}{50}=1\)
Bài mình nhớ tick nha. Nếu ko hiểu thì tham khảo "bài toán số 76" nha
Tìm tỉ số phần trăm của A và B biết:
\(A=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+.....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\) \(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)