Cho hàm số y=ax3+bx2+cx+d có hai điểm cực trị x1, x2 thỏa mãn x 1 ∈ - 3 ; - 1 ; x 2 ∈ 0 ; 1 . Biết hàm số nghịch biến trên khoảng (x1, x2) và đồ thị hàm số cắt trục tung tại điểm có tung độ dương. Mệnh đề nào dưới đây là đúng?
Cho hàm số y = f x = a x 3 + b x 2 + c x + d có hai cực trị x 1 , x 2 thỏa mãn - 2 < x 1 < 0 < x 2 < 2 và có đồ thị như hình vẽ.
Số điểm cực tiểu của hàm số y = f(x) là
A. 3.
B. 5.
C. 7.
D. 4.
Cho hàm số y = f ( x ) = ax 3 + bx 2 + cx + d có hai cực trị x 1 , x 2 thỏa - 2 < x 1 < 0 < x 2 < 2 và có đồ thị như hình vẽ.
Số điểm cực tiểu của hàm số là
A. 3.
B. 5.
C. 7.
D. 4.
Suy ra số điểm cực tiểu của hàm số là 4
Cho hàm số y = a x 3 + b x 2 + c x + d đạt cực trị tại các điểm x 1 , x 2 thỏa mãn x 1 ∈ - 1 ; 0 , x 2 ∈ 1 ; 2 . Biết hàm số đồng biến trên ( x 1 , x 2 ). Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Trong các khẳng định sau, khẳng định nào đúng?
A. a < 0 , b > 0 , c > 0 , d < 0
B. a < 0 , b < 0 , c > 0 , d < 0
C. a > 0 , b > 0 , c > 0 , d < 0
D. a < 0 , b > 0 , c < 0 , d < 0
Đáp án A
Đồ thị cắt trục tung tại điểm có tung độ âm ⇒ y 0 = d < 0
Ta có y ' = 3 a x 2 + 3 b x + c , y ' = 0 ⇔ x 1 + x 2 = - 2 b 3 a x 1 . x 2 = c 3 a . Mà y ' > 0 , ∀ x ∈ x 1 , x 2 ⇒ a < 0
Mặt khác x 1 + x 2 > 0 x 1 . x 2 < 0 ⇒ - 2 b 3 a > 0 c 3 a < 0 ⇔ b > 0 c < 0 . Vậy a < 0 , b > 0 , c > 0 , d < 0 .
Cho hàm số y = a x 3 + b x 2 + c x + d đạt cực trị tại các điểm x 1 , x 2 thỏa mãn x 1 ∈ - 1 ; 0 ; x 2 ∈ 1 ; 2 . Biết hàm số đồng biến trên khoảng x 1 ; x 2 . Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Trong các khẳng định sau, khẳng định nào đúng?
A. a < 0 , b > 0 , c > 0 , d < 0
B. a < 0 , b < 0 , c > 0 , d < 0
C. a < 0 , b < 0 , c < 0 , d < 0
D. a < 0 , b > 0 , c < 0 , d < 0
Cho hàm số y = a x 3 + b x 2 + c x + d a ≠ 0 đạt cực trị tại các điểm x 1 , x 2 thỏa mãn x 1 ∈ - 1 ; 0 , x 2 ∈ 1 ; 2 . Biết hàm số đồng biến trên khoảng x 1 ; x 2 , đồ thị hàm số cắt trục tung tại điểm có tung độ dương. Khẳng định nào dưới đây đúng?
A. a < 0 , b > 0 , c > 0 , d > 0
B. a < 0 , b < 0 , c > 0 , d > 0
C. a > 0 , b > 0 , c > 0 , d > 0
D. a < 0 , b > 0 , c < 0 , d > 0
Chọn đáp án A.
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên d > 0
Hàm số y = a x 3 + b x 2 + c x + d đạt cực trị tại x 1 , x 2 nằm về hai phía của đường thẳng x = 3 khi
A. c + 6b < -27a
B. a và c trái dấu
C. c + 6 b 3 a < - 9
D. Đáp án khác
y = a x 3 + b x 2 + c x + d ⇒ y ' = 3 a x 2 + 2 b x + c
Hai cực trị tại x 1 , x 2 nằm về hai phía của đường thẳng x = 3 khi x 1 < 3 < x 2
⇒ 3 a f 3 < 0 ⇔ 3 a 27 a + 6 b + c < 0 ⇔ a 6 b + c < - 27 a 2 ⇔ 6 b + c 3 a < - 9
Đáp án cần chọn là C
Hàm số y = ax 3 + b x 2 + c x + d đạt cực trị tại x 1 , x 2 nằm về hai phía của đường thẳng x = 3 khi.
A. c + 6b < - 27a
B. a và c trái dấu
C. c + 6 b 3 a < - 9
D. Đáp án khác
Cho hàm số y = a x 3 + b x 2 + c x + d có đồ thị nhận hai điểm A(0;3) và B(2;-1) làm hai điểm cực trị. Số điểm cực trị của đồ thị hàm số y = a x 2 x + b x 2 + c x + d là:
A. 7
B. 5
C. 9
D. 11
Cho hàm số bậc ba y = ax 3 + bx 2 + cx + d có đồ thị nhận hai điểm A(0;3) và B(2;-1) làm hai điểm cực trị. Khi đó số điểm cực trị của hàm số y = | ax 2 | x | + bx 2 + c | x | + d | là
A. 5
B. 7
C. 9
D. 11