Cho mặt phẳng P : x - 2 y - 3 z + 14 = 0 và điểm M 1 ; - 1 ; 1 . Tọa độ của điểm M' đối xứng với M qua mặt phẳng (P) là
A. (2;-3;-2)
B. (2;-1;1)
C. (1;-3;7)
D. (-1;3;7)
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 = 0,
(Q): 2x + y + z - 1 = 0. Mặt phẳng (R) đi qua điểm M(1;1;1) và chứa
giao tuyến của (P) và (Q).
Phương trình của (R): m.(x - 2y - z + 3) + (2x + y + z -1) = 0. Khi đó giá trị của m là
A. 3
B. 1 3
C. -1
D. -3
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 =0, (Q): 2x + y + z - 1= 0, . Mặt phẳng R đi qua điểm M(1;1;1) và chứa giao tuyến của (P) và (Q); phương trình của (R): m.(x-2y-z+3) + (2x+y+z-1). Khi đó giá trị của m là
A. 3
B. 1 3
C. - 1 3
D. 3
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
Cho điểm M(1; 4; 2) và mặt phẳng (α): x + y + z – 1 = 0 Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
M’ đối xứng với M qua (α)
⇒ H là trung điểm MM’
⇒ M’(-3; 0; -2).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Cho mặt phẳng (P): x + y - z + 3 = 0 và hai điểm A ( 2;1;2 ) , B ( 0;3;4 ) . Số các điểm thuộc mặt phẳng (P) sao cho tam giác ABM vuông tại M là.
A. 0
B. 1
C. 2
D. vô số điểm
Tập hợp các điểm M sao cho tam giác ABM vuông tại M là mặt cầu (S) đường kính AB. Có tâm I là trung điểm của AB có tọa độ I ( 1;2;3 ) và có bán kính R = A B 2 = 1 2 2 2 + 2 2 + 2 2 = 3
Khoảng cách từ I ( 1;2;3 ) tới (P): x + y - z + 3 = 0 là
h
=
3
3
=
3
=
R
Như vậy (P) tiếp xúc với mặt cầu nên có điểm chung duy nhất hay có 1 điểm M thuộc (P)
Đáp án cần chọn là B
Cho mặt phẳng ( P ) : x + y - z + 3 = 0 và hai điểm A ( 2 ; 1 ; 2 ) , B ( 0 ; 3 ; 4 ) . Số các điểm thuộc mặt phẳng (P) sao cho tam giác ABM vuông tại M là
A. 0
B. 1
C. 2
D. vô số điểm
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.