Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 =0, (Q): 2x + y + z - 1= 0, . Mặt phẳng R đi qua điểm M(1;1;1) và chứa giao tuyến của (P) và (Q); phương trình của (R): m.(x-2y-z+3) + (2x+y+z-1). Khi đó giá trị của m là
A. 3
B. 1 3
C. - 1 3
D. 3
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, cho ba mặt phẳng (P), (Q), (R) lần lượt có phương trình là ( m 2 + m)x - (m + 2)y + z = 0; x + y + z = 0; 2x + y - z = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R)?
A. m = 1
B. m = -1
C. m = -3/2
D. m = -3/2 hoặc m = -1
Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y + 3z + 1 = 0 và (R): x – 2y – z + 8 = 0
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là:
A. 4x +5y -3z +22=0
B. 4x -5y -3z -12=0
C. 2x +y -3z -14=0
D. 4x +5y -3z -22=0
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x + y + 3z = 0, (R): 2x - y + z = 0 là:
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 và R : 2 x - y + z = 0 là: