Cho hình chóp S.ABC có SA = a , SA ⊥ ABC . Tam giác ABC có AB = BC = 2 a , ABC ^ = 120 0 . Tính khoảng cách từ A đến mặt phẳng (SBC).
A. a 3 4
B. a 3 2
C. a 3 3
D. a 2
Hình chóp S.ABC có đáy là tam giác đều có A B = B C = 2 a ; S A ⊥ ( A B C ) và S A = a 3 Thể tích hình chóp S.ABC bằng
A. a 3
B. a 3 2 12
C. a 3 4
D. a 3 3 4
Đáp án A
Gọi M là trung điểm B C ⇒ A M = 2 a 3 2 = 3 a . d t a b c = 1 2 A M . B C = 1 2 a 3 . 2 a = 3 a 2
Vậy V S . A B C = 1 3 S A . d t A B C = 1 3 a 3 . 3 a 2 = a 3
Cho hình chóp S.ABC có SA ⊥ (ABC), đáy ABC là tam giác đều. Tính thể tích khối chóp S.ABC biết AB = a; SA = a.
A. a 3 3 12
B. a 3 3 4
C. a 3
D. a 3 3
Chọn A.
Do đáy là tam tam giác đều cạnh a nên diện tích đáy là:
Thể tích khối chóp là:
Cho hình chóp S.ABC có S A ⊥ A B C , tam giác ABC vuông tại B. Biết S A = 2 a , A B = a , B C = a 3 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp
A. a
B. 2a
C. a 2
D. 2 a 2
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = a cạnh bên SA vuông góc với đáy và SA = a. Tính diện tích toàn phần S t p của hình chóp S.ABC.
A. S t p = 2 a 2
B. S t p = a 2 1 + 2
C. S t p = a 2 1 + 2 2
D. S t p = 2 a 2 2
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B, A B = B C = a , cạnh bên SA vuông góc với đáy và SA = a. Tính diện tích toàn phần S t p của hình chóp S.ABC.
Hình chóp S.ABC có đáy là tam giác đều có AB = BC = CA = 2a, SA vuông góc (ABC) và S A = a 3 Thể tích hình chóp S.ABC bằng
A. a 3
B. a 3 2 12
C. a 3 4
D. a 3 3 4
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , S A = 2 a tam giác ABC cân tại A, B C = 2 a 2 , cos A C B ^ = 1 3 . Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
A. S = 97 πa 2 3
B. S = 97 πa 2 4
C. S = 97 πa 2 2
D. S = 97 πa 2 5
Đáp án B
Gọi H là trung diểm của BC suy ra cos A C B ^ = sin H A B ^ = 1 3 ⇒ cos H A B ^ = 2 2 3
Mà sin B A C ^ = 2 sin H A B ^ . cos H A B ^ = 4 2 9 nên theo định lí Sin, ta có R ∆ A B C = B C 2 s i n B A C ^ = 9 4
Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là R = R 2 ∆ A B C + S A 2 4 = a 97 4
Vậy diện tích mặt cầu cần tính là S = 4 πR 2 = 4 π a 97 4 2 = 97 πa 2 4
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , S A = 2 a . Biết tam giác ABC cân tại A có B C = 2 a 2 , cos A C B ^ = 1 3 , tính diện tích mặt cầu ngoại tiếp chóp S.ABC
Cho hình chóp S.ABC có tam giác ABC vuông tại B, SA vuông góc với mặt phẳng A B C , S A = 5 , A B = 3 , B C = 4 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = 5 2 2
B. R = 5 2 3
C. R = 5 3 3
D. R = 5 3 2
Chọn đáp án C
Vậy hai điểm cùng nhìn cạnh dưới một góc vuông. Điều đó chứng tỏ SC là đường kính của mặt cầu ngoại tiếp hình chóp. Do đó bán kính