Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp S.ABC có S A ⊥ ( A B C ) , S A = 2 a  tam giác ABC cân tại A, B C = 2 a 2 , cos A C B ^ = 1 3 . Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC

A.  S = 97 πa 2 3

B.  S = 97 πa 2 4

C.  S = 97 πa 2 2

D.  S = 97 πa 2 5

Cao Minh Tâm
27 tháng 10 2018 lúc 13:48

Đáp án B

Gọi H là trung diểm của BC suy ra cos A C B ^ = sin H A B ^ = 1 3 ⇒ cos H A B ^ = 2 2 3  

Mà sin B A C ^ = 2 sin H A B ^ . cos H A B ^ = 4 2 9  nên theo định lí Sin, ta có R ∆ A B C = B C 2 s i n B A C ^ = 9 4  

Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là R = R 2 ∆ A B C + S A 2 4 = a 97 4  

Vậy diện tích mặt cầu cần tính là S = 4 πR 2 = 4 π a 97 4 2 = 97 πa 2 4


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết