tìm số tự nhiên n sao cho n(n+3) là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
Tìm số tự nhiên n có 3 chữ số sao cho 616.n là số chính phương?
616.n là 1 số chính phương
=> n = 616
Vì 616^2 là 1 số chính phương
Học tốt ạ 🙆♀️❤
tìm số tự nhiên n sao cho n(n+3) là số chính phương
Tím tất cả các số tự nhiên n sao cho \(3^n+4\)là số chính phương
Tìm n sao cho n- 1995 và n- 2004 là số chính phương
Tìm số tự nhiên n sao cho : 1! + 2! + 3! + ........+ n! là số chính phương
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Nguồn: yahoo
Tìm số tự nhiên n sao cho:1!+2!+3!+....+n! là số chính phương
tìm số tự nhiên n sao cho : 1!+2!+3!+....+n! là số chính phương