Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Uyên
Xem chi tiết
Phạm Văn Nam
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Nhật Minh
12 tháng 12 2015 lúc 19:31

 

a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1

                                                       = 111...11(n).(10n-1)  +6.111..11(n) +1 

                                                      = 333...332(n) +2.333...33(n) +1  = ( 333.....3(n)+1)2   dpcm

VB Linh Chi
Xem chi tiết
Hàn Thiên
9 tháng 3 2015 lúc 14:47

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

Trần Đại Dương
9 tháng 3 2015 lúc 16:20

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

 

Trịnh Thị Huyền Trang
9 tháng 3 2015 lúc 18:49

mjn nghj rang chac mjn da tra loj sai roi

Nguyễn Việt Đức
Xem chi tiết
hycugwdu
Xem chi tiết
hycugwdu
16 tháng 8 2019 lúc 18:58

n thuộc N nữa nha!

Đặt 11...1(n chữ số 1)=a

Thì 9a+1=10n

\(\Rightarrow M=...\)

          \(=a.\left(9a+1\right)+a+4a+1\)

           \(=9a^2+6a+1=\left(3a+1\right)^2\)

Nguyễn Như Ngọc Hà
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 7 2020 lúc 21:37

Đặt \(\overline{111......1}=a\left(n-chu-so-1\right)\) Khi đó \(10^n=9a+1\)

\(D=\overline{1111.....1}-\overline{8888.....8}+1\)

\(=a\cdot10^n+8a+1=a\left(9a+1\right)+a-8a+1=9a^2-6a+1\)

\(=\left(3a-1\right)^2=\left(33333.....33\right)^2\left(n-chu-so-3\right)\)

Vậy ta có đpcm

Khách vãng lai đã xóa
Bùi Gia Huy
Xem chi tiết
Akai Haruma
29 tháng 6 2021 lúc 17:30

Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)

Ta có:

\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)

\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.

Ta có đpcm.

 

Akai Haruma
29 tháng 6 2021 lúc 17:34

Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)

Ta có:

\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)

\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)

\(=(3t+3)^2\) là scp.

Ta có đpcm.

Nguyễn Minh Hoàng
Xem chi tiết