Cm D là số chính phương D=111....11444...44+1
Cho A=111...111 (gồm 2n chữ số 1)
B=44....44 (gồm n chữ số 4)
c/m: A+B+1 là số chính phương.
Chứng minh rằng A= 111...1112n chữ số 1 + 444..44n chữ số 4 + 1 là số chính phương
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
mjn nghj rang chac mjn da tra loj sai roi
cho a=111....19(n số 1); b=111....19(n số 1). CM: ab+4 là số chính phương
Chứng minh rằng các số sau là số chính phương:
M=111...1+44...4+1(2n chữ số 1;n chữ số 4)
Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)
Chứng tỏ: D=111...1 - 88...8 +1 là số chính phương. Biết 111...1 có 2n chữ số 1, 88...8 có n chữ số 8
Đặt \(\overline{111......1}=a\left(n-chu-so-1\right)\) Khi đó \(10^n=9a+1\)
\(D=\overline{1111.....1}-\overline{8888.....8}+1\)
\(=a\cdot10^n+8a+1=a\left(9a+1\right)+a-8a+1=9a^2-6a+1\)
\(=\left(3a-1\right)^2=\left(33333.....33\right)^2\left(n-chu-so-3\right)\)
Vậy ta có đpcm
1. Cho a = 11....11 ( 2018 c/s 1) b = 44...44 ( 1009 c/s 4 ) chứng minh a+b+1 là số chính phương
2.Cho a = 11...11 (2n c/s 1) b = 11....111 (n+1 c/s 1) c = 66....66(n c/s 6) chứng minh a+b+c+8 là số chính phương
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
d=11`...1(2n số 1) e=111...1(n+1 số 1) f=666...6(n số 6). CMR d+e+f+8 là số chính phương