Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2018 lúc 14:19

(Lưu ý: ΔABC vuông tại A nên  ∠ B   +   ∠ C   =   90 °

Giải tam giác tức là đi tìm số đo các cạnh và các góc còn lại.)

a)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 o   -   ∠ C   =   90 °   -   30 °   =   60 °

c   =   b . t g C   =   10 . t g   30 °   ≈   5 , 77   ( c m )

Để học tốt Toán 9 | Giải bài tập Toán 9

b)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 °   -   ∠ C   =   90 °   -   45 °   =   45 °

=> ΔABC cân => b = c = 10 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

c)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 o   -   ∠ C   =   90 °   -   35 °   =   55 °   b   =   a sin B   =   20 . sin 35 °   ≈   11 , 47   ( c m )     c   =   a sin C   =   20 . sin 55 °   ≈   16 , 38   ( c m )

d)

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.

Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.

hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2019 lúc 12:56

Để học tốt Toán 9 | Giải bài tập Toán 9

∠B = 90o - ∠C = 90o - 35o = 55o

b = asinB = 20.sin35o ≈ 11,47 (cm)

c = asinC = 20.sin55o ≈ 16,38 (cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2018 lúc 15:37

Tương tự câu 1

Dinhhoanglong
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 14:30

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{20^2-16^2}=12\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=40^0\)

Xét ΔABC vuông tại A có

\(tanC=\dfrac{AB}{AC}\)

=>\(AB=10\cdot tan50\simeq11,92\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{10^2+11.92^2}\simeq15,56\left(cm\right)\)

c: Xét ΔABC vuông tại A có \(cosB=\dfrac{3}{4}\)

=>\(\dfrac{AB}{BC}=\dfrac{3}{4}\)

=>\(\dfrac{5}{BC}=\dfrac{3}{4}\)

=>\(BC=\dfrac{20}{3}\)

Xét ΔABC vuông tại A có cosB=3/4

nên \(\widehat{B}\simeq41^0\)

=>\(\widehat{C}=49^0\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{\left(\dfrac{20}{3}\right)^2-5^2}=\dfrac{5\sqrt{7}}{3}\left(cm\right)\)

@DanHee
15 tháng 10 2023 lúc 14:37

a, Theo định lý Pytago :

\(AB^2+AC^2=BC^2\\ \Rightarrow AB=\sqrt{20^2-16^2}=12\)

\(cosB=\dfrac{AB}{BC}=\dfrac{12}{20}\Rightarrow\widehat{B}=53^o8'\)

\(cosC=\dfrac{AC}{BC}=\dfrac{16}{20}\Rightarrow\widehat{C}=36^o52'\)

b, Vì tam giác ABC vuông tại A

\(\widehat{B}+\widehat{C}=90^o\\ \Rightarrow\widehat{B}=90^o-50^o=40^o\)

\(cosC=\dfrac{AC}{BC}\Rightarrow BC=\dfrac{AC}{cosC}=\dfrac{10}{cos50^o}\approx15,6\)

\(tanC=\dfrac{AB}{AC}\Rightarrow AB=tanC\times AC=tan50^o\times10\approx11,9\)

c, 

\(cosB=\dfrac{AB}{BC}\\ \Rightarrow BC=\dfrac{AB}{cosB}=\dfrac{5}{\dfrac{3}{4}}=\dfrac{20}{3}\)

Theo định lý Pytago :

\(AB^2+AC^2=BC^2\\ \Rightarrow AC=\sqrt{\left(\dfrac{20}{3}\right)^2-5^2}=\dfrac{5\sqrt{7}}{3}\)

\(cosB=\dfrac{3}{4}\Rightarrow\widehat{B}=41^o25'\\ sinC=\dfrac{AB}{BC}=\dfrac{5}{\dfrac{20}{3}}=48^o35'\)

nguyễn trà trọng trữ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2019 lúc 18:15

Để học tốt Toán 9 | Giải bài tập Toán 9

∠B = 90o - ∠C = 90o - 30o = 60o

c = b.tgC = 10.tg 30o ≈ 5,77 (cm)


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2018 lúc 4:01

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.

Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.

hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))

Lê Thiên Hương
Xem chi tiết
Phan Ngọc Ánh
Xem chi tiết