Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;-2;3) và có vectơ pháp tuyến n → 2 ; - 1 ; - 2 .
A. x – 2y +3z + 2 = 0
B. x – 2y + 3z - 2 = 0
C. 2x - y - 2z + 2 = 0
D. 2x - y + 2z – 3 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(0;1;3) và song song với mặt phẳng ( Q ) : 2 x - 3 z + 1 = 0 .
A. 2x - 3z - 10 = 0
B. 2x + 3z – 9 = 0
C. 2x - 3z + 9 = 0
D. 2x + 3z + 1 = 0
Chọn C.
Mặt phẳng (P) song song với mặt phẳng (Q):2x - 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: 2x - 3z + D = 0 (D ≠ 1).
Mặt phẳng (P) đi qua điểm M nên thay tọa độ điểm vào phương trình mặt phẳng (P) ta được:
2.0 - 3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x - 3z + 9 = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( 0 ; 1 ; 3 ) và song song với mặt phẳng ( Q ) : 2 x – 3 z + 1 = 0 .
A. 2x - 3z + 2 = 0
B. 2x- 3z + 9 = 0
C. 2x + 3z – 9 = 0
D. Đáp án khác
Chọn B
Mặt phẳng (P) song song với mặt phẳng (Q): 2x – 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: .
Mặt phẳng (P) đi qua điểm M(0;1;3) nên thay tọa độ điểm vào phương trình mặt phẳng (P) Ta được: 2.0 -3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x – 3z + 9 = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x – y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Chọn B.
Mặt phẳng (P) đi qua điểm A(1;0;-2) và có vectơ pháp tuyến có phương trình là:
1(x - 1) - 1(y - 0) + 2(z + 2) = 0 ⇔ x - y + 2z + 3 = 0.
Vậy phương trình mặt phẳng (P) là: x- y + 2z + 3 = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x – 2z + 3 = 0
B. x – y + 2z + 3 = 0
C. x + 2y – z + 3 = 0
D. x - 2z - 3 = 0
Chọn B.
Mặt phẳng (P) đi qua điểm A(1;0;-2) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 có phương trình là:
Vậy phương trình mặt phẳng (P) là: x - y + 2z + 3 = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x - y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Chọn B.
Mặt phẳng (P) đi qua điểm A(1;0;-2) và có vectơ pháp tuyến có phương trình là:
1(x - 1) - 1(y - 0) + 2(z + 2) = 0 ⇔ x - y + 2z + 3 = 0.
Vậy phương trình mặt phẳng (P) là: x- y + 2z + 3 = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A ( 1 ; 0 ; - 2 ) , B ( 1 ; 1 ; 1 ) , C ( 0 ; - 1 ; 2 ) .
A. 7x - 3y + z – 1 = 0
B. 7x + 3y + z + 3 = 0
C. 7x + 3y + z + 1 = 0
D. 7x – 3y + z – 5 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A ( 1 ; 0 ; - 2 ) , B ( 1 ; 1 ; 1 ) , C ( 0 ; - 1 ; 2 ) .
A. 7x - 3y + z – 1 = 0
B. 7x + 3y + z + 3 = 0
C. 7x + 3y + z + 1 = 0
D. 7x – 3y + z – 5 = 0
Chọn D.
Ta có:
Gọi n → là một vectơ pháp tuyến của mặt phẳng (ABC) ta có
ta được phương trình mặt phẳng (ABC) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm A − 1 ; 2 ; 3 và hai mặt phẳng P : x − 2 = 0 và Q : y − z − 1 = 0 . Viết phương trình mặt phẳng đi qua A và vuông góc với hai mặt phẳng P , Q
A. x + y + z − 5 = 0
B. x + z = 0
C. y + z − 5 = 0
D. x + y + 5 = 0
Đáp án C
Ta có n P → 1 ; 0 ; 0 ; n Q → 0 ; 1 ; − 1 suy ra n → = n P → ; n Q → = 0 ; 1 ; 1
Suy ra phương trình mặt phẳng cần tìm là: y + z − 5 = 0
Trong không gian Oxyz, cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).
A. 2y+3z-10=0
B.2x+3z-11=0
C. 2y+3z-12=0
D. 2y+3z-11=0
Đáp án D
Ta có:
Khi đó:
Suy ra (Q): 2y+3z-11=0