Cho B = x 2 + 3 2 − x 2 x 2 + 3 − 3 x + 1 x − 1 . Chọn câu đúng.
A. B < 12
B. B > 13
C. 12 < B< 14
D. 11 < B < 13
Cho đa thức B(x) = 2\(x^{^{ }2}\)-4x + 3. Tính B(3), B(-\(\dfrac{1}{2}\) )
Cho đa thức M(x) = 7\(x^3\)- 3\(x^4\)- \(x^2\) + 3\(x^2\)- \(x^3\)- 3\(x^4\)- 6\(x^3\)
Cho đa thức N(x) = 3x - 5\(x^3\) + 8\(x^2\)- 5x + 5\(x^3\) + 5
B(3)=2*3^2-4*3+3=18-12+3=9
B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
Bài 1/Cho đa thức P(x). Cm rằng nếu P(x) chia hết cho x-a thì P(a)=0
Bài 2/Tìm a,b sao cho x^3+ax+b chia cho x+1 dư 3 và chia cho x-2 dư 1.Tìm k để đa thức P(x)=x^4-9x^3+21x^2+x+k chia hết cho đa thức Q(x)= x^2-x-2
Bài 3/ Cho:
• (a-2)^3+(b-2)^3+(c-2)^3=0
• a^2+b^2+c^2=6
• a+b+c=2
Cm (a^2018-2)×(b^2018-2)×(c^2018-2)=0
Các bạn giải nhanh giùm mình nha! Xin chân thành cảm ơn!!!
Bài 1.Cho biểu thức
A = (\(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\)) : (1-\(\dfrac{x}{x-1}\))
(a) Rút gọn A.
(b) Tìm x để A > 2.
Bài 2.Cho x+y=a,\(x^2+y^2=b\).Tính \(x^3+y^3\)theo a và b
Cho 2 biểu thức:
A=(x-2)^3+2x(x-3)(x+3)+6x(x+1)+(x^3+8)
B=(2y+1)^3-6y(3y+1)-4y(y^2+3y+1)+2y(9y+2)-1
a)Rút gọn A-B
b)Cho x-y=3;x^2+y^2=25. Tính A-B
c)Với x,y thuộc Z. Chứng minh (A-B) chia hết cho 3<=>(x-y) chia hết cho 3
a) cho x+y=a ; x.y =b . Tính
A=x^2+y^2 ; B=x^3+y^3 ; C=x^5+y^5
b) cho x+y=1 . Tính M= 2.(x^3+y^3 ) - 3. ( x^2+y^2 )
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
Câu 1: nếu M=12a+14b thì :
A: M chia hết cho 4
B: M chia hết cho 2
C: M chia hết cho 12
D: M chia hết cho 14
Câu 2 : Cho 2 =2^3 x 3 , b=3^2 x 5^2 , c=2 x 5 khi đó ƯCLN (a,b,c) là :
A :2^3 x 3 x5
B :1
C :2^3 x 3^2 x 5^2
D :30
1) Cho a = x^2 - yz ; b = y^2 - xz ; c = z^2 - xy
C/m ax+ by + cz chia hết cho ( a+b+c)
2) Cho x , y thỏa mãn 5x^2 + 5y^2 + 5xy - 2x + 2y + 2 = 0
Tính A = (x+y)^25 + ( x-1)^24 + (9y-2)^23
3) Cho đa thức A = x^3 + 4x^2 + 3x - 7 và B = x+4
a) Tính A : B
b) Tìm x thuộc z để giá trị biểu thức A chia hết cho giá trị biểu thức B
4) Tìm x biết
a) (x-1)^3 - (x+3)(x^2-3x+9) + 3(x^2-4) = 2
b) ( x+2)(x^2-2x+4)-x(x^2+2)=0
c) x(x-2)+x-2=0
d) 5x(x-3) - x+3 = 0
e) 3x(x-5) - (x-1)(2+3x) = 30
f) (x+2)(x+30-(x-2)(x+5) = 0
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
Cho f(x)=x^3+ax^2+b Tìm a,b để a)f(x) chia hết cho x^2+x+1 b)f(x) chia cho x^2-1 dư x+3
a: f(x) chia hết cho x^2+x+1
=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)
=>-a=0 và b+1=0
=>a=0 và b=-1
b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)
\(=x+a+\dfrac{x+b+a}{x^2-1}\)
Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3
=>b+a=3
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3