Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kigiya aoi
Xem chi tiết
Nguyễn Linh Chi
24 tháng 2 2019 lúc 21:40

Câu hỏi của Phan Nguyễn Hà My - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài của bạn thiên thần quyền năng trí tuệ nhé!

Nguyễn Linh Chi
Xem chi tiết
Thuc Anh
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Hồ Lê Thiên Đức
17 tháng 2 2022 lúc 22:35

Vì a,b là các số nguyên tố lớn hơn 3

=> a,b chia 3 có dư là 1,2

=> a^2,b^2 chia 3 có dư là 1

=> a^2 - b^2 ⋮ 3 (1)

Vì a,b là các số nguyên tố lớn hơn

=> a,b chia 8 dư 1,3,5,7

=> a^2,b^2 chia 8 dư 1

=> a^2 - b^2 ⋮ 8 (2)

Từ (1) và (2), ta có a^2 - b^2 ⋮ 24 (đpcm)

Diệp Chi
Xem chi tiết
Diệp Chi
23 tháng 3 2020 lúc 10:06

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

Khách vãng lai đã xóa
Fudo
23 tháng 3 2020 lúc 16:27

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

Khách vãng lai đã xóa
lucyylucyy
Xem chi tiết
Hoàng My Duyên
Xem chi tiết
Bui Dinh Quang
5 tháng 4 2018 lúc 20:15

n2 + 2015 là số ng tố

Hoàng Duy Khánh TK
Xem chi tiết
I love soccer
2 tháng 4 2018 lúc 21:13

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

Xem chi tiết
the loser
2 tháng 2 2019 lúc 15:56

Do n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

=>n=3k+1 hoặc a=3k+2   (k khác 0)

Xét n=3k+1

=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)

Xét n=3k+2

=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3)  (2)

(1)(2)=>n^2 là số nguyên tố

Chu Phuong Anh
2 tháng 2 2019 lúc 16:03

Vì n > 3 nên n có dạng 3k+1 và 3k+2.

TH1: nếu n có dạng 3k+1 thì:

n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015

Vì 9k.3k chia hết cho 3

3k chia hết cho 3

2015 không chia hết 3

=> n^2+2015 là số nguyên tố.

TH2:nếu n có dạng 3k+2 thì:

n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019

Vì 9k^2 chia hết cho 3

12k chia hết cho3

2019 chia hết cho 3

=>n^2+2015 là hợp số

Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.

       nếu n có dạng 3k+2 thì n^2+2015 là hợp số.

k cho mk nha bạn