Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm thẳng hàng là:
A. ∀ M : M A → + M B → + M C → = 0 →
B. ∀ M : M A → + M C → = M B →
C. A C → = A B → + B C →
D. ∃ k ∈ R : A B → = k A C →
Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm A, B, C thẳng hàng và A nằm giữa B, C là:
A. ∃ k < 0 : A B → = k A C →
B. ∃ k ≠ 0 : A B → = k A C →
C. AB = AC
D. A B → = A C →
Với ba điểm A, B, C phân biệt.Khi A nằm giữa B, C thì hai vecto A B → ; A C → ngược hướng nên
điều kiện cần và đủ để ba điểm A, B, C thẳng hàng và A nằm giữa B, C là: ∃ k < 0 : A B → = k A C →
Đáp án A
Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:
O A → + O C → = O B → + O D →
Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:
Ngược lại, giả sử ta có hệ thức:
Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.
Cho bốn điểm A, B, C và D phân biệt sao cho không có ba điểm nào thẳng hàng. Hãy tìm điểm M sao cho ba điểm A, B, M thẳng hàng, đồng thời ba điểm C, D và M cũng thẳng hàng. Khi nào thì không thể tìm được điểm M như thế?
Giao điểm của AB và CD chính là điểm M thỏa mãn đề bài.
Một lẽ dĩ nhiên là nếu AB song song với CD thì ta không thể tìm được giao điểm của chúng, dẫn đến không tìm được điểm M theo yêu cầu.
Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là :
\(\overrightarrow{AO}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
Cho trước một điểm O. Em hãy:
- Vẽ ba đường thẳng phân biệt a, b, c đôi một cắt nhau sao cho chúng chỉ có một giao điểm duy nhất là O;
- Vẽ đường thẳng m cắt hai đường thẳng a, b lần lượt tại các giao điểm là A, B và không cắt đường thẳng c;
- Vẽ điểm Q ∈ c . Tìm vị trí điểm P sao cho ba điểm O, A, P thẳng hàng và ba điểm P, B, Q thẳng hàng.
P là giao điểm của đường thẳng OA và đường thẳng BQ.
Cho bốn điểm phân biệt A, B, C, D. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để A B → = C D → ?
A. ABCD là hình bình hành.
B. ABDC là hình bình hành.
C. AC = BD
D. AB = CD
Cho 5 điểm A, B, C, M và N thỏa mãn: ba điểm A, B, C thẳng hàng, ba điểm A, B, Mkhông thẳng hàng và ba điểm A, B, N thẳng hàng.
A, vẽ hình minh họa
B, chứng tỏ bốn điểm A, B, Cvà N cùng thuộc một đường thẳng
C, có bao nhiêu đường thẳng phân biệt đi qua hai điểm trong 5 điểm đã cho? Kể tên
Tính tổng các số nguyên x biết :
1, -20<x<21
2, -18< -x<- 17
3,-27<x<-27
4, |x|<-3
5, |-x|<5
Mọi người giúp mình với HELP ME
Trong các điều kiện dưới đây, chọn điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B,
a) \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) ngược hướng
b) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) cùng phương
c) \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) cùng hướng
d) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) ngược hướng
Tham khảo:
a) \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) ngược hướng
\( \Leftrightarrow \left\{ \begin{array}{l}AB//AM\\B \; \text {và}\; M \; \text {nằm cùng phía so với điểm A}\end{array} \right.\)
\( \Leftrightarrow \) A, B, thẳng hàng và A nằm giữa B và M
b) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) cùng phương
TH1: \(MA < MB\)
M, A, B thẳng hàng & A nằm giữa M và B.
TH2: \(MA > MB\)
M, A, B thẳng hàng & B nằm giữa M và A.
c) \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) cùng hướng
TH1: \(AM < AB\)
A, M, B thẳng hàng & M nằm giữa A và B.
TH2: \(AB < AM\)
A, M, B thẳng hàng & B nằm giữa A và M.
d) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) ngược hướng
\( \Leftrightarrow \left\{ \begin{array}{l}MA//MB\\A \; \text {và} \; B\; \text {nằm về hai phía so với điểm M}\end{array} \right.\)
\( \Leftrightarrow \) A, M, B thẳng hàng & M nằm giữa A và B.
Vậy điều kiện cần và đủ để M nằm giữa A và B là d) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) ngược hướng