Cho tứ diện ABCD có AB = AC = AD; góc BAC bằng góc BAD bằng 60 o . Gọi M, N là trung điểm của AB và CD.
Đường thẳng CD vuông góc với mặt phẳng
A. (ABD)
B. (ABC)
C. (ABN)
D. (CMD)
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc, A B = 4 c m , A C = 5 c m , A D = 3 c m . Tính thể tích khối tứ diện ABCD
A. 20 c m 3
B. 10 c m 3
C. 15 c m 3
D. 60 c m 3
Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, AC =5cm, AD= 3cm. Thể tích khối tứ diện ABCD bằng
A. 15 c m 3
B. 10 c m 3
C. 60 c m 3
D. 20 c m 3
Chọn B.
Phương pháp:
Thể tích của tứ diện có các cạnh đôi một vuông góc và các cạnh đó có độ dài lần lượt là a, b, c là
Cách giải:
Tứ diện ABCD có AB, AC, AD đôi một vuông góc
=> Thể tích khối tứ diện ABCD là:
Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, A C = 5 c m , AD= 3cm. Thể tích khối tứ diện ABCD bằng
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc, AB = 4 cm, AC= 5 cm, AD = 3 cm. Tính thể tích khối tứ diện ABCD.
A. 20 c m 3
B. 10 c m 3
C. 15 c m 3
D. 60 c m 3
Phương pháp:
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc, khi đó
Cách giải:
Chọn: A
Cho tứ diện ABCD có A B , A C , A D đôi một vuông góc với nhau, A B = a , A C = b , A D = c . Tính thể tích V của khối tứ diện ABCD theo a, b, c
A. V = a b c 2
B. V = a b c 6
C. V = a b c 3
D. V = a b c
Đáp án B
V A . B C D = 1 3 A D . S A B C = 1 6 A B . A C . A D = a b c 6
Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với nhau, AB=a, AC=b, AD=c Tính thể tích V của khối tứ diện ABCD theo a, b, c
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau, biết rằng A B = a , A C = a 2 , A D = a 3 , a > 0 . Thể tích V của khối tứ diện ABCD là:
A. V = 1 3 a 3 6
B. V = 1 6 a 3 6
C. V = 1 2 a 3 6
D. V = 1 9 a 3 6
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau, biết rằng AB = a; AC =a 2 ; AD = a 3 ,(a>0) Thể tích V của khối tứ diện ABCD là:
A. V = a 3 6 3
B. V = a 3 6 6
C. V = a 3 6 2
D. V = a 3 6 9
Đáp án B
Phương án nhiễu.
A. Sai vì 2 cách: một là thấy số 1 3 cứ chọn, hai là trong công thức thể tích thiếu 1 3 diện tích đáy.
C. Sai vì thiếu 1 3 trong công thức thể tích.
Cho tứ diện ABCD có A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m . Tính thể tích khối tứ diện ABCD.
A. 770 m 3
B. 340 m 3
C. 720 m 3
D. 360 m 3
Phương pháp:
Dựng hình hộp chữ nhật AMCN.PBQD sao cho các đường chéo A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m
Từ đó ta phân chia thể tích các hình chóp nhỏ trong hình hộp chữ nhật để tính được V A B C D theo thể tích hình hộp chữ nhật.
Dựa vào định lý Pytago để tính các kích thước của hình hộp chữ nhật từ đó suy ra thể tích V A B C D
Cách giải:
Dựng hình hộp chữ nhật AMCN.PBQD như hình bên. Khi đó
Tứ diện ABCD thỏa mãn A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m
Gọi các kích thước hình hộp chữ nhật là m; n; p. Gọi
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC). Biết rằng AC = AD = 4cm, AB = 3cm, BC = 5cm. Tính thể tích tứ diện ABCD