Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 4 2019 lúc 11:34

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2017 lúc 17:08

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 6 2019 lúc 3:41

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2018 lúc 4:40

Đáp án A

Ta có  z = 5 - i 1 + i + i - 1 1 - i 2 + i = 1 + 2 i ⇒ w = 8 i ⇒ w = 8 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 13:28

Tập hợp các điểm z thỏa mãn điều kiện z - 1   =   2  là đường tròn (C) tâm I(1;0) bán kính  R   =   2

Gọi M là điểm biểu diễn cho số  phức z, A(0,-1) là điểm biểu diễn cho số phức -i, B(2;1)là  điểm  biểu  diễn  cho  số  phức 2+i

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2019 lúc 3:53

Đáp án D

Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.

Cách giải:

Tập hợp các điểm z thỏa mãn điều kiện  là đường tròn (C) tâm I(1;0) bán kính R= 2

 

Gọi M là điểm biểu diễn cho số  phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1)   điểm  biểu  diễn  cho  số  phức 2+i 

Dễ thấy A,B ∈ C và 

 AB là đường kính của  đường  tròn (C) 

vuông  tại  M

 

 

Đặt

Xét hàm số  trên  ta có:

 

Vậy maxT=4

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2018 lúc 14:45

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2017 lúc 11:39

ĐÁP ÁN: C

Đỗ Phương Nam
Xem chi tiết
Phương Thảo
7 tháng 4 2016 lúc 11:19

Giả sử: \(z=x+yi (x;y\in |R)\)

Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)

     <=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)

     <=>\(2x+2yi+2=3x-3yi+5i-i^2\)

     <=>\((3x-2x+1-2)+(5-3y-2y)i=0\)

     <=>\((x-1)+(5-5y)i=0\)

     <=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)

     <=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

Suy ra: z=1+i =>|z|=\(\sqrt{2}\)

Nguyễn Kim Khánh Hà
7 tháng 4 2016 lúc 11:21

Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :

\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)

\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)