Giá trị x thỏa mãn 2 x - 2 = ln 2 thuộc
A. ( 0 ; 3 2 )
B. ( 3 2 ; 2 )
C. ( 3 4 ; 1 )
D. ( 5 3 ; 2 )
vẽ đồ thị y=1/2x
tìm A thuộc đồ thị sao cho tọa độ thỏa mãn x+2y=2
tìm B thuộc đồ thị sao cho tọa độ thỏa mãn giá trị tuyệt đối của y-x=2
y=\(\frac{1}{2}\)x =) x=2y
x+2y=2
=) 2y+2y=2
=) y=\(\frac{1}{2}\)
=) x=1
Giá trị x thỏa mãn 2 x - 2 = ln 2 thuộc
A. ( 0 ; 3 2 )
B. ( 3 2 ; 2 )
C. ( 3 4 ; 1 )
D. ( 5 3 ; 2 )
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln x 2 + y . Tính giá trị nhỏ nhất của P = x + y.
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y
⇔ x y ≥ x 2 + y ⇔ y x - 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 => x > 1
⇒ P = x y ≥ x 2 x - 1 + x = f x
X é t h à m s ố f x = x 2 x - 1 + x v ớ i x > 1
⇒ f ' x = x 2 - 2 x x - 1 2 + x = 2 x 2 - 4 x + 1 x - 1 2
⇒ f ' x = 0 ⇔ x = 2 + 2 2 v ì x > 1
Dựa vào bảng biến thiên của hàm số f(x) suy ra
⇒ M i n P = M i n x > 1 f x = f 1 = 3 + 2 2 .
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 2 9 và f ' ( x ) = 2 x [ f ( x ) ] 2 với mọi giá trị x thuộc R Giá trị của f(1) bằng
A. - 35 36
B. - 2 3
C. - 19 36
D. - 2 15
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho x,y là các số thực dương thỏa mãn ln x + ln y ≥ ln x 2 + y Tìm giá trị nhỏ nhất của P=x+y
A. 6
1/giá trị của x thỏa mãn x(x-1)-(x+1)^2=4
2/Ngiệm của đa thức 4x^2+4x+1
3/giá trị a<0 thỏa mãn (x-a)(x+a)=x^2-169
4/giá trị của biểu thức 8x(2x-1)-(4x-1)^2-13
Cứ nói người ta ngu trong khi cứ ngồi đó,giỏi thì làm đi
giá trị nào x thuộc N thỏa mãn 25 : x-2
A, 2
B,25
C,3
D,23
#Trl :
Là C, 3
Ez :3
TL :
x = \(3\)
\(\Rightarrow\)\(C.3\)
Hok tốt