Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 3 2 + x + 1 + 2017 x ≤ 2017 x 2 - ( m + 2 ) x + 2 m + 3 ≥ 0 có nghiệm.
Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 2 2 + x + 1 + 2017 x ≤ 2017 x 2 - ( m + 2 ) x + 2 m + 3 ≥ 0 có nghiệm
A. m ≤ - 2
B. m ≥ - 3
C. m > - 3
D. m ≥ - 2
Đáp án D.
Phương pháp:
Sử dụng phương pháp hàm số giải bất phương trình (1), suy ra điều kiện của nghiệm x.
Bất phương trình (2), cô lập m, đưa về dạng m ≥ f(x) trên [a;b] có nghiệm
Cách giải: ĐK: x ≥ –1
Xét hàm số có => Hàm số đồng biến trên R
Để hệ phương trình có nghiệm thì phương trình (2) có nghiệm
Với
Để phương trình có nghiệm (sử dụng MTCT để tìm GTNN)
Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 3 2 + x + 1 + 2017 x ⩽ 2017 x 2 - ( m + 2 ) x + 2 m + 3 ⩾ 0 có nghiệm.
A. m ≤ - 2
B. m ⩾ - 3
C. m > - 3
D. m ≥ - 2
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình x - 3 < 0 m - x < 1 vô nghiệm.
A. m < 4
B. m > 4
C. m ≤ 4
D. m ≥ 4
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình 3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11.
B. m ≥ -11.
C. m < -11.
D. m ≤ -11.
Chọn A.
Hệ bất phương trình có nghiệm
⇔ 14 - m < 25 ⇔ -m < 11 ⇔ m > -11
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11
B. m ≥ -11
C. m < -11
D. m ≤ -11
Chọn A
Hệ bất phương trình có nghiệm
hay 14 - m < 25 hay m > -11
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11
B. m ≥ -11
C. m < -11
D. m ≤ -11
Chọn A
Ta có:
Hệ bất phương trình có nghiệm ⇔ 14 - m 5 < 5
Hay 14 - m < 25 tương đương m > -11
Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 3 2 + x + 1 + 2017 x ≤ 2017 x 2 - m + 2 x + 2 m + 3 ≥ 0 có nghiệm.
A. m ≥ - 3 .
B. m ≥ - 2 .
C. m > - 3 .
D. m ≤ - 2 .
Tìm tất cả các giá trị của tham số thực m để hệ phương trình ( x + 1 ) ( 3 x 2 + 5 x y ) = m x 2 + 4 x + 5 y = 3 có ít nhất một cặp nghiệm thực
A . - 13 16 ; 9 4
B . ( - ∞ ; 9 4 ]
C . - ∞ ; 9 4
D . - 1 ; 9 4