Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x và y = e x , trục tung và đường thẳng x=1 được tính theo công thức
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x , y = sin 2 x và đường thẳng x = - π 4 bằng
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x , y = sin 2 x và đường thẳng x = - π 4 bằng
A. - π 2 32 + π 8 + 1 4
B. π 2 32 + π 8 - 1 8
C. π 2 32 + π 8 - 1 4
D. π 2 32 - π 8 + 1 4
diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x và y = ex , trục tung và đường thẳng x = 1 được tính theo công thức nào ?
Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số: y = 3 x 2 ; y = 2 x + 5 ; x = - 1 ; x = 2
A. S = 256 27
B. S = 269 27
C. S = 9
D. S = 27
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y =x và y = ex, trục tung và đường thẳng x=1 được tính theo công thức
A. S = ∫ 0 1 e x - 1 d x
B. S = ∫ - 1 1 e x - 1 d x
C. S = ∫ 0 1 x - e x d x
D. S = ∫ - 1 1 e x - x d x
Đáp án A
Xét hàm số f(x) = ex – x, hàm số liên tục trên đoạn [0;1]
Ta có => f(x) đồng biến trên [0;1]
Suy ra
=> S = ∫ 0 1 e x - 1 d x
Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: y = x 3 - 3 x ; y = x . Tính S ?
A. S = 4
B. S = 8
C. S = 2 .
D. S = 0
Tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = sin x , y = cos x và hai đường thẳng x = 0 , x = π 2 ?
A. S = 2 2
B. S = 2 1 − 2
C. S = 2 2 − 1
D. S = 2 2 − 1
Đáp án C
∫ 0 π 2 sin x − cos x d x = − ∫ 0 π 4 sin x − cos x d x + ∫ π 4 π 2 sin x − cos x d x = − 2 ∫ 0 π 4 sin x − π 4 d x + ∫ π 4 π 2 sin x − π 4 d x S = 2 . cos x − π 4 π 4 0 − 2 . cos x − π 4 π 2 π 4 = 2 1 − 1 2 − 2 1 2 − 1 = 2 2 − 2 = 2 2 − 1
“Dùng CASIO tính tích phân trị tuyệt đối, dò đáp án