Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh Căn (1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x^3+y^3=2x^2*y^2
cho x là số hữu tỉ khác 0 và y là số vô tỉ. chứng minh x+y ; x-y;xy;x/y đều là số hữu tỉ
trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có bài tương tự đó bạn
Hãy cho biết x và y là số vô tỉ hay là số hữu tỉ nếu biết:
a) x+y và x-y đều là số hữu tỉ
b) x+y và x/y đều là số hữu tỉ
Cho hai số hữu tỉ x và y thỏa mãn x3 - y3 = 2xy
Chứng minh : \(\sqrt{1+xy}\) là số hữu tỉ
\(x^3-y^3=2xy\)
\(\Leftrightarrow x^4-xy^3-2x^2y=0\)
\(\Leftrightarrow\left(x^2-y\right)^2-y^2-xy^3=0\)
\(\Leftrightarrow\left(x^2-y\right)^2=y^2\left(1+xy\right)\)
\(\Leftrightarrow1+xy=\left(\frac{x^2-y}{y}\right)^2\)
Ta có đpcm.
Cho x, y là số hữu tỉ khác 1 thỏa mãn: \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ
Cho x là số hữu tỉ khác 0 và y là số vô tỉ. Chứng minh:
a) x+y là số vô tỉ
b) xy là số vô tỉ?
a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)
=> y = a - x, là số hữu tỉ, trái với đề bài
=> điều giả sử là sai
=> x + y là số vô tỉ (đpcm)
lm tương tự vs câu b
a) Có x thuộc Q; y thuộc I
Giả sử x + y = a thuộc Q
=> y = a - x thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x + y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.
b) Có x thuộc Q; y thuộc I
Giả sử x - y = a thuộc Q
=> y = x - a thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x - y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.