Cho a,b,c la 3 canh cua tam giac, cmr a^2/b + b^2/c + c^2/a >= a+b+c
cho a,b,c la 3 canh cua tam giac cmr a/(b+c-a)+b/(a+c-b)+c/(a+b-c) a^2+b^2+c^2
cho a,b,c la 3 canh cua tam giac
tm (a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2=(a-b)^2+(b-c)^2+(c-a)^2. tam giac ay la tam giac gi
cho a ,b,c la do dai 3 canh cua tam giac
cmr: a2+b2+c2+2bc>0
cho a,b,c la 3 canh cua 1 tam giac CMR: A=a/(b+c-a) + b/(a+c-b) + c/(a+b-c) >=3
Cho a,b,c la ba canh cua tam giac
CMR ab+bc+ca<=a^2+b^2+c^2<2(ab+bc+ca)
\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\) \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Theo bất đẳng thức tam giác :\(\hept{\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\a\left(b+c\right)>a^2\\b\left(a+c\right)>b^2\end{cases}}\) \(\Rightarrow\hept{\begin{cases}c^2< bc+ac\\a^2< ab+ac\\b^2< ab+bc\end{cases}}\) \(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Cho a , b , c la ba canh cua mot tam giac . CMR
\(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
bđt tam giác:
\(\hept{\begin{cases}a+b>c\Leftrightarrow ac+bc>c^2\\b+c>a\Leftrightarrow ab+ac>a^2\\a+c>b\Leftrightarrow ab+bc>b^2\end{cases}}\)
Cộng theo vế: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
goi a,b,c la cac canh cua 1 tam giac co 3 duong cao tuong ung la ha,hb,hc. cmr (a+b+c)^2/ha^2+hb^2+hc^2 lon hon hoac bang 4
Goi a,b la đô dài cac canh goc vuong cua mot tam giac vuong, c la đô dài canh huyen , h la đô dài đg cao tren canh huyen. Cmr
( h+ c)^2 = (a+ b) ^2 +h^2
neu a,b,c la 3 canh cua mot tam giac thoa man a^2+b^2>5c^2 thi c la canh nho nhat
bài toán cm cái này phải không :a^2 +b^2 > c^2
cho cái đề cm cái gì