\(\frac{a^2}{b}+b\ge2a;\frac{b^2}{c}+c\ge2b;\frac{c^2}{a}+a\ge2c\)(BĐT cô-si)
\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Rightarrowđpcm\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{a^2}{b}+b\ge2a;\frac{b^2}{c}+c\ge2b;\frac{c^2}{a}+a\ge2c\)(BĐT cô-si)
\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Rightarrowđpcm\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Goi a,b la đô dài cac canh goc vuong cua mot tam giac vuong, c la đô dài canh huyen , h la đô dài đg cao tren canh huyen. Cmr
( h+ c)^2 = (a+ b) ^2 +h^2
thach thuc tat ca hs cua onlmath
Cac ban duoc dung kien thuc tu lop 6 den lop 9
cho a,b,c la do dai 3 canh trong mot tam giac
CMR: 2(a/b+b/c+c/a)>a/c+b/a+c/b+3
thach thuc tat ca hs cua onlmath
Cac ban duoc dung kien thuc tu lop 6 den lop 9
cho a,b,c la do dai 3 canh trong mot tam giac
CMR: 2(a/b+b/c+c/a)>a/c+b/a+c/b+3
cho a,b,c la do dai 3 canh cua mot tam giac thoa man dieu kien \(\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
chung minh a,b,c la 3 canh cua mot tam giac deu
Cho a,b,c la do dai 3 canh cua mot tam giac co chu vi la 2. Chung minh \(a^2+b^2+c^2+2abc<2\)
1. cho tam giac ABC M;N lan luot la trung diem cua CA ,CB ;I la diem bat ki tren MN (I khac M;N ) C/M trong 3 tam giac ICB;ICA;IAB; co 1 tam giac ma dien tich cua no bang tong cac dien tich cua 2 tam giac con lai
2. cho tam giac ABC tren cac canh AB;AC;CA keo dai ve phia B;C;A lay B1;C1;A1 sao cho BB1=b;CC1=c; AA1=a c/m a/AC+b/ AB+c/BC>HOAC =3
cho a,b,c la 3 canh cua 1 tam giac.biet :(a+b)(b+c)(c+a)=8abc
chưng minh tam giac da cho là tam giác đều
giúp mk nha.
Cho a,b,c la 3 canh cua tam giac\(a\ge b\ge c\)
cm \(9ab\ge\left(a+b+c\right)^2\)
cho a;b;c la 3 canh cua 1 tam giac. C/m voi moi x;y;z: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)