Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
TL :
aaa = a . 111
Ta có :
111 = 3 . 37
=> aaa = a . 111 = a . 3 . 37
=> aaa luôn chi hết cho 37
Vậy số có dạng aaa luôn chia hết cho 37
AI BIẾT LÀM BÀI NÀY CHỈ EM VỚI Ạ!! EM CẢM ƠN ❤
Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng ab - ba ( a lớn hơn hoặc bằng b ) bao giờ cũng chia hết cho 9.
c) Với mọi số tự nhiên n thì tích ( n + 3 )( n + 6 ) luôn chia hết cho 2.
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
1.CMR số có dạng aaa bao giờ cũng chia hết cho 37
2.CMR hiệu ab-ba bao giờ cũng chia hết cho 9
1. aaa = a . 111 = a . 3 . 37 \(⋮\)37
Vậy số có dạng aaa luôn chia hết cho 37
~~~~ có ai xem và cổ vũ cho U ( 23 ) việt Nam không ~~~~
Chứng tỏ rằng số có dạng abcabc lúc nào cũng chia hết cho 11, chia hết cho 91.
CMR:số có dạng aaa bao giờ cũng chia hết cho 37
aaa = 100a + 10a + a = a×111 = a×3×37 → aaa chia hết cho 37.
Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7 (chẳng hạn 333333 chia hết cho 7 )
Ta có:
\(\overline{aaaaaa}=a.111111=7a.15873⋮7\)
Do đó:\(\overline{aaaaaa}⋮7\left(dpcm\right)\)
Chứng tỏ rằng có số dạng 19781978...1978000...000 chia hết cho 2017
Chứng tỏ rằng hiệu ab− ba (với a ≥ b) bao giờ cũng chia hết cho 9
Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).
Chứng tỏ rằng mọi số tự nhiên có 3chữ số giống nhau đều chia hết cho 37
Gọi chung các số tự nhiên có 3 chữ số khác nhau là aaa.
Ta có:
aaa = a . 111 = a . ( 3 . 37) = 3a . 37 chia hết cho 37.
Vậy mọi số tự nhiên có 3chữ số giống nhau đều chia hết cho 37
Gọi 3 chữ số tự nhiên giống nhau là aaa
Ta có: aaa=a.111=a.373 chia hết cho 37
Suy ra: mọi số tự nhiên có 3 chữ số giống nhau đều chia hất cho 37
Mọi số tự nhiên có 3 chữ số giống nhau đều có dạng aaa ( a là chữ số khác 0)
Ta có: aaa = 100a + 10a + a
= 111a = 3.37.a chia hết cho 37
=> đpcm
Ủng hộ mk nha ♡_♡☆_☆