Cho tứ giác ABCD trong đó A ^ = 73 0 , B ^ = 112 0 , D ^ = 84 0 . Tính số đo góc C ^ ?
tứ giác ABCD có tọa độ các đỉnh như sau A(0:2) , B(3:0) , C(0:-2) , D(-3:0) . tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó.
Tứ giác ABCD có tọa độ các đỉnh như sau A(0;2); B(3; 0); C(0;-2) ; D(-3;0).Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó.
Ta có: A(0;2) và C(0;-2) là hai điểm đối xứng qua O(0;0)
⇒ OA = OC
B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)
⇒ OB = OD
Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Lại có: Ox ⊥ Oy hay AC ⊥ BD.
Vậy tứ giác ABCD là hình thoi
Trong ∆ OAB vuông tại O, theo định lý Pi-ta-go ta có:
A B 2 = O A 2 + O B 2
A B 2 = 2 2 + 3 2 = 4 + 9 = 13
AB = 13
Vậy chu vi của hình thoi bằng 4 13
tứ giác ABCD có tọa độ các đỉnh A(0,-4),B(3,0),C(0,4),D(-3,0). Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó
Ta có: A(0;-4) và C(0;4) là hai điểm đối xứng qua O(0;0)
⇒ OA = OC
B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)
⇒ OB = OD
Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Lại có: Ox ⊥ Oy hay AC ⊥ BD.
Vậy tứ giác ABCD là hình thoi
Trong Δ∆OAB vuông tại O, theo định lý Pi-ta-go ta có:
AB2=OA2+OB2
AB2=42+32 = 16 + 9 = 25
AB = √25
Vậy chu vi của hình thoi bằng 4√25
Bài 1: Cho tứ giác ABCD có góc B=1100 ; góc D = 700 , AC là tia phân giác của góc A . Chứng minh rằng CB=CD
b) Thay điều kiện góc B=1100 ; góc D=700 trong câu a bởi điều kiện nào để bài toán vẫn đúng
Bài 2 : cho tứ giác ABCD có A=C=900 . Vẽ tia phân giác của góc B cắt AD ở E . Qua D kẻ đường thẳng song song với BE cắt BC tại F . Chứng minh rằng DF là tia phân giác của góc D
Bài 3; Cho tứ giác ABCD có góc A=1000 ; góc B = 1200 . Các tia phân giác của góc C và góc D cắt nhau tại E , các tia phân giác của góc ngoài tại C và D cắt nhau tại F . Tính các góc của tứ giác DECF
Bài 4 : Chứng minh rằng 1 tứ giác , tổng 2 đường chéo lớn hơn nửa chu vi và nhỏ hơn chu vi tứ giác đó ( Sử dụng bất đẳng thức )
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
BÀI 1 : CHO TỨ GIÁC ABCD CÓ : \(\widehat{A}+\widehat{B}=200^{^0};\widehat{B}+\widehat{C}=218^0;\widehat{C}+\widehat{D}=160^0\) TÍNH \(\widehat{C}\)VÀ \(\widehat{D}\)
BÀI 2 : CHO TỨ GIÁC ABCD CÓ \(\widehat{B}=80^0;\widehat{D}=120^0\)GÓC NGOÀI ĐỈNH C BẰNG 1300 . TÍNH GÓC A CỦA TỨ GIÁC
BÀI 3 : TỨ GIÁC ABCD CÓ \(\widehat{A}=57^0;\widehat{C}=110^0;\widehat{D}=75^0\).TÍNH GÓC NGOÀI TẠI ĐỈNH B
Câu 34: Cho tứ giác ABCD có góc A= 750,B= 1050 , C= 800Khi đó số đo của góc D bằng :
A. 100 0 B. 1050 C. 750 D. 800
Câu 34: Cho tứ giác ABCD có góc A= 750,B= 1050 , C= 800Khi đó số đo của góc D bằng :
A. 100 0 B. 1050 C. 750 D. 800
cho tứ giác ABCD có AB=a; BC=b; CD=c; DA=d (a,b,c,d > 0 thỏa \(a^2+b^2+c^2+d^2=\left(a+c\right)\left(b+d\right)\)
a) tứ giác ABCD có gì đặc biệt?
b) nếu cho thêm giả thiết AC*BD=ab+cd khi đó tính các góc của ABCD
a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)
<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)
<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)
=>a=b=c=d
=> ABCD là hình thoi
cho tứ giác ABCD có A=190 C=D=73 Tính số đo B
\(\widehat{B}=360^0-190^0-2\cdot73^0=24^0\)
Cho tứ giác ABCD. Các tia phân giác \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)cắt nhau tạo thành một tứ giá. Chứng minh tứ giác đó có tổng hai góc đối bằng 1800.
1) Cho tứ giác ABCD có góc B = 1200 , góc C = 600, D = 900. Tính góc A và góc ngoài đỉnh A
2) Cho tứ giác ABCD có phân giác trong của góc A và góc B cắt nhau tại E, phân giác ngoài của góc A và góc B cắt nhau tại F. Chứng minh: AEB = \(\frac{C+D}{2}\)và AFB = \(\frac{A+B}{2}\)
Ai giải nhanh nhất trong vong 30' thì mik sẽ like + sao cho nha đang cần gấp giúp mik vs