Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho D E D H = C K C B . Chứng minh:
a) Δ A D E ∽ Δ A C K ;
b) Δ A E K ∽ Δ A D C ;
c) A E K ^ = 90 0
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
B, tam giác aek ~ tam giác adc
*Hình vẽ tay hơi xấu thông cảm
a, Ta có: \(\frac{DE}{DH}=\frac{CK}{BC}\Rightarrow\frac{DE}{CK}=\frac{DH}{BC}\left(1\right)\)
Gọi giao điểm của AC và BD là O.
=> OA = OB = OC = OD
=> ∆OBC cân tại O
=> ^OCB = ^OBC hay ^ACB = ^OBC
Xét ∆AHD và ∆ABC có:
^AHD = ^ABC
^ADH = ^ACB ( = ^OBC)
=> ∆AHD ~ ∆ABC (g-g)
=> \(\frac{AD}{AC}=\frac{DH}{BC}\left(2\right)\)
Từ (1) và (2) => \(\frac{AD}{AC}=\frac{DE}{DH}\)
Xét ∆ADE và ∆ACK có:
\(\frac{AD}{AC}=\frac{DE}{DH}\)(cmt)
^ADE = ^ACK ( vì ^ADH = ^ACB)
=> ∆ADE ~ ∆ACK (c-g-c)
b, Theo câu a, ∆ADE ~ ∆ACK
=>\(\hept{\begin{cases}\widehat{DAE}=\widehat{CAK}\Rightarrow\widehat{DAE}+\widehat{EAC}=\widehat{CAK}+\widehat{EAC}\Rightarrow\widehat{DAC}=\widehat{EAK}\\\frac{AE}{AK}=\frac{AD}{AC}\Rightarrow\frac{AE}{AD}=\frac{AK}{AC}\end{cases}}\)
=> ∆AEK ~ ∆ADC (c-g-c)
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
B, tam giác aek ~ tam giác adc
C, góc aek = 90o
Cho ΔABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CD lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kẻ từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song với DE
b) Tính Hk, biết chu vi ΔABC bằng 10
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BA=BD(Gt)
BH chung
Do đó: ΔAHB=ΔDHB(cạnh huyền-cạnh góc vuông)
Suy ra: AH=DH(hai cạnh tương ứng)
Xét ΔAKC vuông tại K và ΔEKC vuông tại K có
CA=CE(gt)
CK chung
Do đó: ΔAKC=ΔEKC(Cạnh huyền-cạnh góc vuông)
Suy ra: KA=KE(Hai cạnh tương ứng)
Xét ΔADE có
\(\dfrac{AH}{HD}=\dfrac{AK}{KE}\left(=1\right)\)
nên HK//DE(Định lí Ta lét đảo)
Cho hình bình hành ABCD có điểm E thuộc cạnh BC , điểm G thuộc cạnh AB và AE = CG . Gọi H là chân đường vuông góc kẻ từ D đến AE , K là chân đường vuông góc kẻ từ D đến CG . So sánh độ dài DH và DK
Cho ΔABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CD lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kẻ từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a)C/m HK//DE
b)Tính HK,bt chu vi △ABC=10cm
Help me pls
Cho hình chữ nhật ABCD có O là giao điểm của 2 đường chéo AC và BD. Lấy điểm M nằm giữa O và B. Vẽ điểm E trên tia đối của tia MA sao cho MA = ME. Gọi H là chân đường vuông góc kẻ từ E xuống BC. Vẽ hình chữ nhật EHCF. Chứng minh : M, H, F thẳng hàng.
Bạn Đường Quỳng Giang hướng dẫn làm bài này rồi mà.
cho tam giác ABC. Trên tia đối của tia BC lấy diểm D sao cho BD=AB. Trên tia đối của tia CD lấy điểm E sao cho CE=AC. Gọi H là đường vuông góc kẻ từ D đến AD, K là chân đường vuông góc kẻ từ C đến AE.
a) Chứng minh rằng HK song song với DE.
b) Tính HK, biết chu vi tam giác ABC bằng 10
Cho tam giác ABC vuông tại A có BC=2AB. Trên cạnh AC lấy điểm D sao cho góc ABD=⅓ góc ABC. Trên cạnh AB lấy điểm E sao cho góc ACE= ⅓ góc ACB. BD cắt CE tại F. gọi I và K theo thứ tự là chân các đường vuông góc kẻ từ F đến BC và AC. Vẽ G và H sao cho I là trung điểm của FG, K là trung điểm của FH. Chứng minh rằng ba điểm H; D;G thẳng hàng
Cho tam giác ABC vuông tại A có trung tuyến AM, đường cao AH. Trên tia AM lấy D sao cho AM=MD
a)CM tứ giác ABCD là hình chữ nhật
b)Gọi E,F lần lượt là chân đường vuông góc kẻ từ H đến AB và AC. CM AEHF là hình chữ nhật
c)Gọi I,K lần lượt là chân đường vuông góc kẻ từ M đến AB và AC. CM góc IHK=90 độ