Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : CE = CF
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : C H 2 = AE.BF
Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90 °
Tam giác ABC vuông tại C có CH ⊥ AB
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
C H 2 = HA.HB (3)
Xét hai tam giác ACH và ACE, ta có:
CH = CE (tính chất đường phân giác)
AC chung
Suy ra : ∆ ACH = ∆ ACE (cạnh huyền, cạnh góc vuông)
Suy ra: AH = AE (4)
Xét hai tam giác BCH và BCF, ta có:
CH = CF (= CE)
BC chung
Suy ra: ∆ BCH = ∆ BCF (cạnh huyền, cạnh góc vuông)
Suy ra: BH = BF (5)
Từ (3), (4) và (5) suy ra: C H 2 = AE.BF
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : AC là tia phân giác của góc BAE
Ta có: AE // OC
Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d với đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh CE = CF
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
Do đó: ABNM là hình thang vuông
b: AM//CO
=>gó MAC=góc OCA=góc OAC
=>AC là phân giác của góc BAM
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
=>ABNM là hình thang vuông
b: AM//CO
=>góc MAC=góc OCA
=>góc MAC=góc OAC
=>AC là phân giác của góc BAM
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi M và N lần lượt là chân các đường vuông góc kẻ từ A đến B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng: a) Tứ giác ABNM là hình thang vuông
b) Ac là tia phân giác góc BAM
c) = AM.BN
Cho nửa đường tròn tâm O đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E, F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng:
a. CE=CF
b. AC là tia phân giác của góc BAE
c. CH^2= AE.CF
a. Ta có: \(OC\perp d\)(tính chất tiếp tuyến)
\(AE\perp d\) (gt)
\(BF\perp d\) (gt)
Suy ra : OC // AE // BF
Mà OA = OB (= R)
Suy ra: CE = CF ( tính chất đường thẳng song song cách đều )
b. Ta có: AE // OC
\(\Rightarrow\widehat{OCA}=\widehat{EAC}\)( hai góc so le trong ) ( 1 )
Ta có : \(OA=OC\left(=R\right)\)
\(\Rightarrow\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)( 2 )
Từ (1)(2) suy ra : \(\widehat{EAC}=\widehat{OAC}\)
Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE
c. Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90o
Tam giác ABC vuông tại C có \(CH\perp AB\)
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
CH2 = HA . HB (3)
Xét hai tam giác ACH và ACE, ta có :
\(\widehat{AEC}=\widehat{AHC}=90^o\)
CH = CE (tính chất đường phân giác)
AC chung
Suy ra : \(\Delta ACH=\Delta ACE\) (cạnh huyền, cạnh góc vuông)
Suy ra: AH = AE (4)
Xét hai tam giác BCH và BCF, ta có :
\(\widehat{AHC}=\widehat{BFC}=90^o\)
CH = CF (= CE)
BC chung
Suy ra: \(\Delta BCH=\Delta BCF\) (cạnh huyền, cạnh góc vuông)
Suy ra: BH = BF (5)
Từ (3), (4) và (5) suy ra: CH2 = AE . BF
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB . Chứng minh rằng :
a) CE = CF
b) AC là tia phân giác của góc BAE
c) \(CH^2=AE.BF\)