Cho hình bình hành ABCD và các điểm M, N thỏa mãn A M → = 2 A B → + 3 A D → ; A N → = x A B → + 5 A D → . Để ba điểm M, N, C thẳng hàng thì:
A. x = 1
B. x = 3
C. x = 5
D. x = 7
Cho hình bình hành ABCD trên đường chéo AC lấy M và P sao cho AM=MP=PC
a)CM: BM và DP đi qua trung điểm N và Q của AD và BC
b) Tứ giác MNPQ là hình bình hành
c)Hình bình hành ABCD cần thỏa mãn điều kiện gì để MNPQ là Hình chữ nhật hình thoi hình vuông
GIÚP MIK VỚI
cho hbh ABCD, trên AC lấy 2 điểm M và N sao cho MA = CN.
a, tứ giác BNDM là hình j?b, hình bình hành ABCD phải thêm điều kiện j ? thì BNDM là hình thoic, BM cắt AD tại K. Xác định vị trí của M để K là trung điểm của AD.d, hình bình hành ABCD thỏa mãn cả 2 điều kiện ở b, c thì phải thêm điều kiện j để BNDM là hình vuôngCho hình bình hành ABCD , M là trung điểm BC , N thỏa mãn vecto NC = 2 ND .
a Biểu thị vecto DM ,MN theo 2 vecto AB , AD
b Biểu thị vecto MN theo vecto AC và BD
\(\overrightarrow{NC}=2\overrightarrow{ND}=2\overrightarrow{NC}+2\overrightarrow{CD}\Rightarrow\overrightarrow{NC}=2\overrightarrow{DC}\Rightarrow\overrightarrow{CN}=2\overrightarrow{CD}\)
a.
\(\overrightarrow{DM}=\overrightarrow{DC}+\overrightarrow{CM}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{CB}=\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\)
\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}+2\overrightarrow{CD}=-2\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)
b.
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\\\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AD}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\\\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MN}=-2\left(\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\right)=-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{5}{4}\overrightarrow{BD}\)
Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D →
A. một đường tròn.
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng.
Cho hình bình hành ABCD, có M, N, P, Q lần lượt là các các trung điểm của AB, BC, CA, AD. HÌNH BÌNH HÀNH ABCD PHẢI THỎA MÃN ĐIỀU KIỆN GÌ ĐỂ TỨ GIÁC MPMQ LÀ HÌNH CHỮ NHẬT , HÌNH THOI, HÌNH VUÔNG?
Dễ dàng thấy ngay rằng các đoạn QM, PN, QP, MN là đường trung bình của các tam giác ADB, CDB, ADC, ABC.
Vậy thì QM song song và bằng PN hay tứ giác MNPQ là hình bình hành.
+) Để hình bình hành MNPQ là hình bình chữ nhật thì \(QM\perp MN\Leftrightarrow AC\perp BD\Leftrightarrow\) Hình bình hành ABCD là hình thoi.
+) Để hình bình hành MNPQ là hình bình thoi thì QM = MN hay AC = BD \(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
+) Để hình bình hành MNPQ là hình vuông thì nó phải là hình chữ nhật và hình thoi, hay hình bình hành ABCD cũng là hình chữ nhật và hình thoi. Nói cách khác, ABCD phải là hình vuông.
Bài 4. Cho ABCD là hình bình hành. Hai điểm M, N lần lượt chuyển động trên các đoạn thẳng AB, CD (M, N khác đỉnh của hình bình hành) thỏa mãn AM = CN. Chứng minh đường thẳng MN luôn đi qua một điểm cố định
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định
Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D → là?
A. một đường tròn.
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng.
Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D → là?
A. một đường tròn
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng
cho hình bình hành ABCD. N, M là trung điểm của AD và BC. I và H là giao điểm của AN với BD , CM với BD. E , Flà trung điểm của AB và CD. Hình bình hành ABCD thỏa mãn điều kiện gì đề EIFH là hình chữ nhật