Cho ba vecto n → , a → , b → bất kì đều khác với vecto 0 → . Nếu vecto n → vuông góc với cả hai vecto a → v à b → thì n → , a → v à b → :
A. đồng phẳng
B. không đồng phẳng
C. có giá vuông góc với nhau từng đôi một
D. có thể đồng phẳng
Cho hai vecto a → và b → đều khác vecto 0 . Hãy xác định vecto c → = 2 a → - b → và giải thích tại sao ba vecto a → , b → , c → đồng phẳng
a → , b → , c → đồng phẳng vì a → và b → không cùng phương và có cặp số (2; -1) sao cho c → = 2 a → - b →
Cho hai vectơ a và b đều khác vectơ 0. Các khẳng định sau đúng hay sai?
a, Hai vecto cùng hướng thì cùng phương.
b, Hai vecto b→ và kb→ cùng phương.
c, Hai vecto a→ và (-2)a→ cùng hướng.
d) Hai vector ngược hướng với vector thứ ba khác vectơ 0→ thì cùng phương.
TL: A, B, D: Đúng; C: Sai
Nếu ba vecto a → , b → , c → cùng vuông góc với vecto n → khác 0 → thì chúng.
A. đồng phẳng
B. không đồng phẳng
C. có thể đồng phẳng
D. có thể không đồng phẳng
theo em dc học, vecto 0 cùng phương với mọi vecto vì 0 = 0a ( xin hiểu là vecto), vậy vecto bất kì có cùng phương với vectơ 0 không? vì không có k sao cho a = k0? sách giáo khoa có ghi vecto 0 cùng phương với mọi vecto, vậy có thể coi ngược lại hay cả hai vecto cùng phương ko ???? mong anh chị giải đáp
cho 3 điểm A,B,C,D,E không thẳng hàng. liệt kê các vecto(khác vecto không) có điểm đâu là A hoặc B và điểm cuối bất kì
Điểm đầu là A: `\vec(AB), \vec(AC),\vec(AD),\vec(AE)`
Điểm đầu là B: `\vec(BA),\vec(BC),\vec(BD),\vec(BE)`.
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)
\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)
b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)
\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)
\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)
Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))
cho 2 vecto a và vecto b, từ điểm O bất kì ta dựng vecto OA bằng vecto a, vecto AB bằng vecto b. Vecto OB được gọi là tổng của 2 vecto a và vecto b, kí hiệu là gì? help gấp lắm
b: \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}\)
Cho ba vecto a → , b → , c → trong không gian. Chứng minh rằng nếu m a → + n b → + p c → = 0 → và một trong ba số m, n, p khác không thì ba vecto a → , b → , c → đồng phẳng
Giả sử p ≠ 0 ta có:
Do đó, ba vecto a → , b → , c → đồng phẳng theo định lí 1
Cho tam giác ABC trọng tâm G CMR: vecto MG = 1/3( vecto MA + vecto MB + vecto MC) với M bất kì
Xét ΔABC có G là trọng tâm
nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\dfrac{1}{3}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{3}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\left(3\cdot\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\cdot3\cdot\overrightarrow{MG}=\overrightarrow{MG}\)