CMR với mọi số tự nhiên khác 0 là a thì
2.a.(2.a-1)....(a+3).(a+2).(a+1) chia hết cho 2^a
chứng minh rằng với mọi số tự nhiên khác 0 là a thì 2*a*(2a-1)*...*(a+3)*(a+2)*a+1 chia hết cho 2^a
bài 2: cho A= 1+2 + 3+ 4+ ... + n
a) với n = 2009 . cmr: A chia hết cho 2009 và A ko chia hết cho 2010
b) cmr: ( A- 7 ) ko chia hết cho 10 với mọi số tự nhiên n
bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
câu b thì mk không chắc chắn với cách của mk lắm nhưng bạn cứ tham khảo thử nha!
Xét 2 trường hợp
Xét \(n⋮5\)(n chia hết cho 5) suy ra \(n^2\)chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Xét n không chia hết cho 5 suy ra \(n^2\)không chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Vậy a không chia hết cho 5 với mọi số tự nhiên n
CMR:với mọi số tự nhiên khác 0 là a thì
2.a.(2.a-1).....(a+3).(a+2).(a+1) chia hết cho 2\(^a\)
Khi a là 1 thì 2a=1
mà bất cứ số nào cũng chia hết cho1
=> 2.a.(2.a-1).....(a+3).(a+2).(a+1) chia hết cho 1
=>2.a.(2.a-1).....(a+3).(a+2).(a+1) chia hết cho 2a (ĐPCM)
=> NHỚ TICK CHO MK ĐÓ NHA !!!!!!!!!!!!!!
ai trả lời nhanh và đúng tớ sẽ tick 5 lần đúng nhé
2 chia hết cho 2
và a.a+1 chia hết cho 2
và (a+3).(a+2) chia hết cho 2
nên 2a.a+1. ... .(a+3).(a+2).(a+1) chia hết cho 2^3
tick nhe
học giỏi nhé
Cho a,b là số tự nhiên khác 0 sao cho a2 +b2 chia hết cho ab + 1
CMR (a2+b2)/(ab+1) là số chính phương
CMR có thể biểu diễn lập pương 1 số nguyên dương bất kì dưới dạng hai số chính phương
cho n là số tự nhiên khác 0 CMR A = 2^n + 11^n -2^2n -3^2n chia hết cho 14
1)a)tìm n thuộc N*để 3n+1chia hết cho5n-2
b)tìm các chữ số a,,b,c để 7268abc chia hết cho 7,12,8,9
2)cho a và blaf 2 số nguyên tố cùng nhau sao cho a,b khác tính chẵn lẻ cmr a+b và a(a+2)+ab là 2 số nguyên tố cùng nhau
3)cmr với mọi n thuộc N* thì
1.2.3+2.3.5+3.4.7+..+n(n+1)(2n+1)=n(n+1)^2(n+2)/2
4)cho 17 số tự nhiên khác 0:a1,a2,a3,....,a17mà a1+a2+a3+...+a17=153153
cmr a1^5+a2^9+a3^13+...+a17^69 không phải số chính phương
ai muốn kết bn với tớ thì hãy click cho tớ nhé
CMR với mọi số tự nhiên a thì (11a+1)*(11a+2) chia hết cho 6
cho a+1 và b+2007 chia hết cho 6 chứng minh rằng 4^n +a +b chia hết cho 6 với mọi n là số tự nhiên khác 0
Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$
$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$
Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0
$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$
$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$
Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6
$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)