Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
A=1/100+1/101+1/102+1/103+...+1/200.So sanh A voi 3/4
A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)
(Sử dung phương pháp chặn số đầu)
\(\frac{1}{100}\)>\(\frac{1}{101}\)
\(\frac{1}{100}\)>\(\frac{1}{102}\)
...
\(\frac{1}{100}\)>\(\frac{1}{200}\)
nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)> \(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)
\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)
\(\Rightarrow\)A >\(\frac{3}{4}\)
C = \(\frac{1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}}{1+\frac{1}{3}+......+\frac{1}{3^{101}}}\)
D = \(\frac{1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}}{1+\frac{1}{3}+........+\frac{1}{3^{102}}}\)
ai lam ho minh voi so sanh nha
Cho M=1/2.3/4.5/6...99.100 va N=2/3.4/5.6/7.... 100/101 va N=2/3.4/5.6/7..100/101
a) So sanh M va N b) Tinh M.N c) So sanh M va 1/10
cho B =101/102+102/103+103/101. so sanh B voi 3
\(B=\frac{101}{102}+\frac{102}{103}+\frac{103}{101}\)
\(B=1\)
B < 3
so sanh :A =(101102+1)/(101103+1) voi B = (101103 +1 )/ (101104+1)
ai lam duoc 3 tich
\(101A=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=\frac{101^{103}+1+100}{101^{103}+1}=\frac{101^{103}+1}{101^{103}+1}+\frac{100}{101^{103}+1}=1+\frac{100}{100^{103}+1}\)
\(101B=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=\frac{101^{104}+1}{101^{104}+1}+\frac{100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
vì 100103+1<100104+1
=>\(\frac{100}{100^{103}+1}>\frac{100}{100^{104}+1}\)
=>\(1+\frac{100}{100^{103}+1}>1+\frac{100}{100^{104}+1}\)
=>A>B
Cho tong: A= 1/32 - 1/34 + 1/36 - 1/38 + ... + 1/398 -1/3100
Hay so sanh A voi 0.1
\(1.A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
\(3^2.A=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
cộng lai (phân giữa triệt tiêu hết)
\(\left(1+9\right)A=1-\frac{1}{3^{100}}< 1\)
=>\(10A< 1\Rightarrow A< 0,1\)
tinh nhanh 1+2 -3-4+5+6-7-8+...-99-100+101+102
1+2-3-4+5+6-7-8+............-99-100+101+102
=1+(2-3-4+5)+(6-7-8+9)+...............+(98-99-100+101)+102
=1+0+0+..............+0+102
=103
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100
A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
A = 1 - 1/100 < 1
nha bn
chúc bn học giỏi
Tinh nhanh tong sau :
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
\(M=1+2+3+4+5+...+99+100+101\)
Số số hạng của M là: \(\frac{101-1}{1}+1=101\)
Tổng của M = \(\frac{\left(1+101\right).101}{2}=5151\)
ĐS: 5151
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Đây là dãy số cách đều 1 đơn vị
Số số hạng có trong dãy M là:
( 101 - 1 ) : 1 + 1 = 101 ( số hạng )
Tổng của dãy số M là:
( 101 + 1 ) x 101 : 2 = 5151
Đáp số: 5151
~ Chúc bạn học tốt ~
\(SLSH:\frac{101-1}{1}+1=101\left(SH\right)\)
Tổng là: \(\frac{\left(101+1\right).101}{2}=5151\).