Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thuyết
Xem chi tiết
Lê Hoàng Minh
Xem chi tiết
Bùi Huy Phúc
Xem chi tiết
thang
17 tháng 5 2016 lúc 21:22

xet hieu 1/3+1/31+1/35+1/47+1/53+1/61-1/2=-0.04929921068luon nho hon 1/2 suy ra dieu phai chung minh

đẹp trai
12 tháng 1 2021 lúc 22:03
Trả lời nghe nđv
Khách vãng lai đã xóa
Kirigaya Kazuto
Xem chi tiết
Hoang Hung Quan
13 tháng 3 2017 lúc 22:34

Đặt \(A=\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)

Ta có:

\(A=\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)

\(\Rightarrow A=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)

Nhận xét:

\(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}\)

\(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{45}+\frac{1}{45}+\frac{1}{45}\)

\(\Rightarrow A< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)

\(\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\) (Đpcm)

nguyễn ngọc thư
Xem chi tiết
nguyen khac hoang phuc
23 tháng 2 2017 lúc 21:03

Chứng minh kiểu gì chỉ có mấy ps cộng với nhau chả nhẽ cộng hả

nguyễn ngọc thư
23 tháng 2 2017 lúc 21:06

cmr nhỏ hơn 1/2

Pokemon
23 tháng 2 2017 lúc 22:00

chứng minh gì vậy

Trần Văn Thành
Xem chi tiết
Wall HaiAnh
6 tháng 5 2018 lúc 18:26

Trả lời

\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)

\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)

\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}\)

\(\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{2}\)

Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\left(đpcm\right)\)

Nguyển Uyên Yến Như
19 tháng 6 2018 lúc 10:25

1/2 lớn hơn

vì phân số 1/2 có mẫu số nhỏ hơn các phân số kia nên phân số 1/2 sẽ lớn hơn các phân số kia

Nguyen Thuy Tien
Xem chi tiết
Nguyễn Đức Trường
Xem chi tiết
TRỊNH THỊ KIM HỒNG
13 tháng 5 2016 lúc 14:50

\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)

Ta có: Gọi dãy số cần chứng minh là A

\(A<\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)

\(A<\frac{1}{3}+\frac{3}{30}+\frac{4}{60}\)

\(A<\frac{10}{30}+\frac{3}{30}+\frac{2}{30}\)

\(A<\frac{15}{30}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

k nha

Captain America
Xem chi tiết
Đinh Tuấn Việt
5 tháng 5 2015 lúc 22:41

\(T=\left(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)

\(T