Tính tổng
S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)
với n thuộc số nguyên dương
Tính tổng:
\(S=1+2+5+14+.....+\frac{3^{n-1}+1}{2}\)với n là số nguyên dương.
nhìn cái cuối là biết quy luật đó bạn :))
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)
chỗ 30+31+...+3n-1 bn tự tính :))
tính tổng S với n thuộc số nguyên dương
S=1+2+5+14+..........+\(\dfrac{3^{n-1}+1}{2}\)
\(S=1+2+5+14+...+\dfrac{3^{n-1}+1}{2};\left(n\in N\backslash\left\{0\right\}\right)\)
\(2S=2+4+10+28+....+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+....+n\right]+\left[1+3+9+..+3^{n-1}\right]\)
\(S_1=1+1+1+..+n=n\)
\(S_2=1+3+9+....+3^{n-1}\)
\(3S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\dfrac{3^n-1}{2}\)
\(S=\dfrac{s_1+s_2}{2}=\dfrac{n+\dfrac{3^n-1}{2}}{2}=\dfrac{3^n+2n-1}{4}\)
Tính tổng S = 1+2+3+...+n
Với n là số nguyên dương.
Từ đó duy ra rằng n(n+1) chia hết cho 2 với mọi n thuộc N
S = 1 + 2 + 3 + ... + n
S = n(n + 1) : 2
2S = n(n + 1)
2S ⋮ 2
=> n(n + 1) ⋮ 2
Tính tổng S= 1+2+5+14+.......+\(\frac{3^{n-1}+1}{2}\)(n thuộc Z)
Tính tổng : S = 1 + 2 + 5 + 14 + ........ + \(\frac{3^{n-1}+1}{2}\) ( với n thuộc Z )
áp dụng quy tắc
số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1
Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2
1/ viết chương trình tính tổng bình phương s= 1² +2²+3²+... + n² với n là số nguyên dương được nhập từ bàn phím 2/ viết chương trình tính tổng của n số lẻ đầu tiên với n là số nguyên dương được nhập từ bàn phím
1:
uses crt;
var n,i,t:integer;
begin
clrscr;
readln(n);
t:=0;
for i:=1 to n do
t:=t+i*i;
write(t);
readln;
end.
2
program bt2;
var i,n,t:integer;
begin
readln(n);
s:=0;
for i:=1 to n do
if i mod 2 = 1 then s:=s+i;
readln;
end.
Tính tổng:
S= 1 + 2 + 5 + 14 +... + 3n - 1 + 1/2 ( với n thuộc Z)
tính tổng : S= 1 + 2 + 5 + 14 + ....+\(\frac{3^{n-1}+1}{2}\)<với n thuộc Z>
b, cho đa thức f(x) = x4 +2x3 -2x2 -6x+5
trong các số sau 1 , -1 , 5 ,-5 số nào là nghiệm của đa thức f(x)
Tính tổng:
S= 1+ 2+ 5+ 14+...+ 3^n-1 +1/ 2 ( với n thuộc Z+)
S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)
=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)
=n^2/2+(3^n-1/4)=3^n+2-1/4
~~~~~~~~~~~~~~~~~~~~~