Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2018 lúc 6:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2017 lúc 4:06

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2018 lúc 18:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2017 lúc 3:26

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2019 lúc 2:48

Đáp án là B

Tập giá trị của hàm số  log a x = R

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2017 lúc 14:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 11 2019 lúc 15:32

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 14:17

Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.

Bất phương trình  mx2+ (m+ 1) x+ m+1≥0

⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1

Xét hàm số f ( x ) = - x - 2 x 2 + x + 1   với 1≤ x≤ 2

Có đạo hàm  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 10 2019 lúc 14:08

Nguyễn Phúc Trường An
Xem chi tiết
Akai Haruma
18 tháng 1 2024 lúc 19:50

Lời giải:

Để pt có 2 nghiệm pb thì: $\Delta'=4-(3-m)>0$

$\Leftrightarrow m+1>0\Leftrightarrow m>-1(*)$
Khi đó, áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:

$x_1+x_2=4$

$x_1x_2=3-m$

Để $0\leq x_1< x_2<3$ thì:

\(x_2,x_1\geq 0\Leftrightarrow \left\{\begin{matrix}\ x_1x_2=3-m\geq 0\\ x_1+x_2=4\geq 0\end{matrix}\right.\Leftrightarrow m\leq 3(**)\)

\(x_2,x_2<3\Leftrightarrow \left\{\begin{matrix} x_1+x_2<6\\ (x_1-3)(x_2-3)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4<6\\ x_1x_2-3(x_1+x_2)+9>0\end{matrix}\right.\)

\(\Leftrightarrow 3-m-12+9>0\Leftrightarrow m<0(***)\)

Từ $(*); (**); (***)\Rightarrow -1< m< 0$