Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi hien dieu
Xem chi tiết
congchuachipu
Xem chi tiết
nguyentrangha
Xem chi tiết
letrucquynh2004
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 4 2016 lúc 18:39

=> 4.S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 => 4.S - S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 − 4 1 + 4 2 + 4 3 + ... + 4 2014 => 3.S = = 1 + 4 2 − 4 1 + 4 3 − 4 2 + 4 4 − 4 3 + ... + 4 2014 − 4 2013 − 4 2014 => 3.S = 1 + 4 1 + 4 1 + ... + 4 1 − 4 2014 Tính A= 1 + 4 1 + 4 1 + ... + 4 1 => 4.A = 4 + 1 + 4 1 + 4 1 + ... + 4 1 => 4.A - A = 4 − 4 1 => A= 3 4 − 3.4 1 4 1 2014 4 1 2014 4  Trả lời 3  Đánh dấu Cho tổng gồm 2014 số hạng: S= 1/4 + 2/4 2 + 3/4 3 + 4/4 4 + ... + 2014/4 2014 Chứng mih rằng: S < 1 2 3 2013 ( 2 3 2013 ) ( 2 3 2014 ) ( ) ( 2 2 ) ( 3 3 ) ( 2013 2013 ) 2014 2 2013 2014 2 2013

letrucquynh2004
30 tháng 4 2016 lúc 18:48

bạn có thể trình bày theo dòng không

nguyen phumanh
Xem chi tiết
Băng băng
2 tháng 7 2017 lúc 20:24

Giữa hai số chẵn có 4 số lẻ, vậy hiệu của 2 số chẵn này là 4 x 2 = 8

Số bé là:(2014 - 8) : 2 =1003

Số lớn là:1003 + 8 = 1011

Vậy không thỏa mãn yêu cầu của đề bài (vì 2 số đều là lẻ)

=>2 số đó là 1003 và 1011

chọn đúng cho mình nha đúng 100% luôn

~Chúc bạn học giỏi~

hồ quỳnh anh
2 tháng 7 2017 lúc 20:24

Số đó là : 1002 và 1012

Nguyễn Thị Lan Hương
2 tháng 7 2017 lúc 20:31

Giữa hai số chẵn có 4 số lẻ, vậy hiệu của 2 số chẵn này là

4 x 2 = 8

Số bé là:

(2014 - 8) : 2 =1003

Số lớn là:

1003 + 8 = 1011

Vậy không thỏa mãn yêu cầu của đề bài (vì 2 số đều là lẻ)

=>2 số đó là 1003 và 1011

lam van khanh
Xem chi tiết
Hoàng Phúc
10 tháng 5 2016 lúc 8:57

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)

\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)

Issac Newton
10 tháng 5 2016 lúc 9:29

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)

\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)

\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

Bùi Khánh Linh
Xem chi tiết
ST
1 tháng 5 2017 lúc 21:57

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)

\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)

\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{2010}{4^{2014}}< 4\)

\(\Rightarrow9S< 4\)

\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)

Thanh Tùng DZ
1 tháng 5 2017 lúc 21:48

Ta có :

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

gọi     \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )

\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\)  ( 4 )

Lấy ( 4 ) - ( 3 ) ta được :

\(3B=4-\frac{1}{4^{2013}}\)

\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)

\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)

vậy \(S< 1\)

Nguyễn Thị Hải Yến
Xem chi tiết
ánh trịnh hồng
24 tháng 4 2022 lúc 18:56

4S=1+24+342+....+2014420134S=1+24+342+....+201442013

4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)

3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014

3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014

đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023

4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)

3A=4−1420233A=4−142023

A=43−13.42023A=43−13.42023

⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024

⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024

do 49<48=1249<48=12

⇒S=49−19.42023−20143.42024<48=12(đpcm)

Nguyễn Bảo My
Xem chi tiết
Trần Thị Loan
25 tháng 4 2015 lúc 21:52

=>  \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)

=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.S =  \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)

=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}

Trần Thị Loan
25 tháng 4 2015 lúc 22:20

Nếu là 1/2 thì ta so sánh 4/9 < 4/8 = 1/2 => S < 1/2

Luong Huyen Trang
13 tháng 8 2017 lúc 16:05

Sao an loan luc lam S luc lam A vay? Do hoi chang?