Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i . là một số thuần ảo. Là một đường tròn tâm.I(a;b)
Tính tổng a + b
A. 2
B. 1
C. - 2
D. 3
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Cho số phức z = x + yi. Tập hợp các điểm biểu diễn của số phức z sao cho số phức z + i z - i là một số thực âm là:
A. Các điểm trên trục hoành với -1<x<1
B. Các điểm trên trục tung với -1<y<1
C. Các điểm trên trục tung với - 1 ≤ y < 1
D. Các điểm trên trục tung với y ≤ - 1 y ≥ 1
Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i là một số thuần ảo.
Là một đường tròn tâm I(a;b). Tính tổng a + b
A. 2
B. 1
C. -2
D. 3
Chọn C.
Giả sử có điểm M(x;y) biểu diễn z trên mặt phẳng (Oxy).
Khi đó
Từ số bằng: ; u là số thuần ảo khi và chỉ khi:
Kết luận: Vậy tập hợp các điểm biểu diễn của z là một đường tròn tâm I(-1;-1), bán kính R= 5 , loại đi điểm (0;1).
Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i . là một số thuần ảo. Là một đường tròn tâm.I(a;b)
Tính tổng a + b
A. 2
B. 1
C. - 2
D. 3
Cho số phức z = x + y i x , y ∈ ℝ . Tập hợp các điểm biểu diễn của số phức z sao cho số phức z + i z - i là một số thực âm là:
A. Các điểm trên trục hoành với -1 < x < 1
B. Các điểm trên trục tung với -1 < y < 1
C. Các điểm trên trục tung với - 1 ≤ y < 1
D. Các điểm trên trục tung với | y ≥ 1 y ≤ - 1
Xác định tập hợp các điểm biểu diễn số phức z trên mặt phẳng phức sao cho z − i z + i là số thực.
A. Đường tròn phương trình x 2 + y 2 = 1 bỏ đi điểm (0;−1).
B. Trục tung bỏ đi điểm (0;−1).
C. Hyperbol phương trình x 2 − y 2 = − 1 bỏ đi điểm (0;−1).
D. Trục hoành bỏ đi điểm (0;1).
Đáp án B
Gọi z = x + i y ; x , y ∈ ℝ .
z − i z + i = x + i y − 1 x + i y + 1 = x + i y − 1 x − i y + 1 x 2 + y + 1 2 = x 2 + y 2 − 1 + i x y − 1 − x y + 1 x 2 + y + 1 2 = x 2 + y 2 − 1 x 2 + y + 1 2 + i − 2 x x 2 + y + 1 2 .
z − i z + i là số thực ⇔ − 2 x x 2 + y + 1 2 = 0 ⇔ x = 0 x ≠ 0 ; x ≠ − 1 là trục tung bỏ đi điểm (0;−1).
Tập hợp các điểm M biểu diễn số phức z sao cho z 2 = ( z ¯ ) 2 là
A. Trục tung và trục hoành.
B. Trục tung.
C. Trục hoành.
D. Gốc tọa độ.
Cho số phức z thỏa mãn: |z - 1 + i| = 2. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng.
B. Một đường Parabol.
C. Một đường tròn có bán kính bằng 2.
D. Một đường tròn có bán kính bằng 4.
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
Cho số phức z thỏa mãn: z − 1 + i = 2 . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng
B. Một đường Parabol
C. Một đường tròn có bán kính bằng 2
D. Một đường tròn có bán kính bằng 4
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z 1 được biểu diễn bởi điểm A(1;-1).
Em có: z − 1 + i = 2 ⇒ MA = 2 .
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình: x − 1 2 + y + 1 2 = 4 .
Cách 2: Đặt z = x + yi , x ; y ∈ ℝ . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
z − 1 + i = 2 ⇔ x − 1 + y + 1 i = 2 ⇔ x − 1 2 + y + 1 2 = 2 ⇔ x − 1 2 + y + 1 2 = 4
Vậy tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
x − 1 2 + y + 1 2 = 4 .