Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 16:25

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

Ngô Duy Phúc
Xem chi tiết
hong pham
Xem chi tiết
Ảo Tưởng
19 tháng 7 2015 lúc 20:38

x=10

tick đúng nha

Phương Hoàng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 3 2017 lúc 16:48

Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x 

           |x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x 

Mà |x - 3|2 + |x - 3| = 0

Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

Võ Nhật Lê
1 tháng 3 2017 lúc 16:46

chuyển vế đi=> X=3 hoặc X=2

Tập hợp có 2 phần tử 3;2

Bùi Thế Hào
1 tháng 3 2017 lúc 16:52

/x-3/2+/x-3/=0  (1)

+/ Với x\(\ge\)3 => x-3\(\ge\)0 => (1) <=> (x-3)2+x-3=0 <=> (x-3)(x-3+1)=0 

  <=>(x-3)(x-2)=0 => x=2 và x=3. Mà  x\(\ge\)3  => Chọn x=3

+/ Với x<3 => x-3<0 => (1) <=> (3-x)2+3-x=0 <=> (3-x)(3-x+1)=0 

<=>(3-x)(4-x)=0 => x=3 và x=4. Mà  x<3  => Không có giá trị phù hợp.

ĐS: x=3

so so
Xem chi tiết
Trần Tiến Minh
Xem chi tiết
Hồ Sỹ Tiến
8 tháng 5 2016 lúc 15:47

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

fairy
Xem chi tiết
alibaba nguyễn
13 tháng 6 2017 lúc 11:20

\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=2x^2y^2+x^4y^4-40xy+101\)

\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)

Phan Văn Long
13 tháng 6 2017 lúc 9:26

\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)

=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)

fairy
13 tháng 6 2017 lúc 10:47

sai rồi

Vân Khánh
Xem chi tiết
alibaba nguyễn
17 tháng 11 2016 lúc 20:30

Bài này làm phức tạp nên để khi khác làm