Cho a, b thuộc N* biết : a > 2 ; b > 2
Chứng minh a + b > a.b
( giải rõ hộ nha rùi tui like 3 lần cho )
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
1.Tìm a,b thuộc N*.Biết a + b = 224 và UCLN của a,b là 56
2.Chứng tỏ 2n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau với n thuộc N
3. Tìm a,b thuộc N biết a.b = 2400 và BCNN của a,b là 120
4. Cho a chia hết cho b BCNN của a,b là 18 . Tìm a,b
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,
. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
1. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1. Cho A= 120a+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1/ A=12(10a+3b) chia heets cho 12
2/
a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3
b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2
a) Cho ab thuộc N, chứng tỏ:ab.(a+b) chia hết cho 2
b) Tìm x và y thuộc N biết : xy.(x+y)=456789
a) Để ab.(a+b) chia hết cho 2
=> ab chẵn hoặc ( a+b ) chẵn.
Tìm x thuộc N biết: a)(x mũ 54)mũ2 = x b)2 mũ x+3 + 2 mũ x=144 Bài 4:Tìm a,b thuộc N biết a) 2 mũ a + 124 =5b b)3 mũ a + 9b = 183 Bài 5:Cho A= 1+2+2 mũ 2+2 mũ 3+...+2 mũ 2010 và B=2 mũ 2011 - 1
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
a) (x ^ 54)^2 = x
x^108 = x
Để: x^108 = x
=> x=0 hoặc x=1
b) 2^x+3 +2^x =144
2^X . 2^3 + 2^x =144
2^x.( 2^3+1) =144
2^x. 9 =144
2^x =144:9
2^x = 16
=> 2^x = 2^4
-Vậy x = 4
cho a,b thuộc n* biết a>2,b>2
chứng minh :a+b<a*b
Cho a,b thuộc N*. biết a> 2, b > 2
Chứng minh a+b > a×b
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b
vậy đề bài có vấn đề :v
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b. (Đpcm)
Cho 2 tập hợp :
A={ n thuộc N l n (n+1) bé hoặc bằng 12}
B={x thuộc Z l l x l <3}
a. Tìm giao của tập hợp
b. có bao nhiêu tích ab (với a thuộc A; b thuộc B) được tạo thành , cho biết những tích là ước của 6 .